Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.
Papers: различия между версиями
Материал из DSWiki
Перейти к навигацииПерейти к поиску
Нет описания правки |
(+arXiv links.) |
||
Строка 2: | Строка 2: | ||
* Alexey Glutsyuk and Mikhail Lyubich. [http://wiki.dynsys.org/misc/uerghyp.pdf Unique ergodicity of horospheric foliations revisited]. | * Alexey Glutsyuk and Mikhail Lyubich. [http://wiki.dynsys.org/misc/uerghyp.pdf Unique ergodicity of horospheric foliations revisited]. | ||
* T. Golenishcheva-Kutuzova, V. Kleptsyn, Minimality and ergodicity of a generic analytic foliation of C², ''Ergodic Theory and Dynamical Systems'', '''28''' (2008), no. 5, pp. 1533--1544. | * T. Golenishcheva-Kutuzova, V. Kleptsyn, Minimality and ergodicity of a generic analytic foliation of C², ''Ergodic Theory and Dynamical Systems'', '''28''' (2008), no. 5, pp. 1533--1544. | ||
* B. Deroin, V. Kleptsyn, Random conformal dynamical systems, ''Geometry and Functional Analysis'', '''17''' (2007), no. 4, pp. 1043-1105. | * B. Deroin, V. Kleptsyn, [http://arxiv.org/abs/math/0506204 Random conformal dynamical systems], ''Geometry and Functional Analysis'', '''17''' (2007), no. 4, pp. 1043-1105. | ||
=== Attractors & time averages === | === Attractors & time averages === | ||
Строка 14: | Строка 14: | ||
=== One-dimensional dynamics === | === One-dimensional dynamics === | ||
* B. Deroin, V. Kleptsyn, A. Navas, Sur la dynamique unidimensionelle et régularité intermédiaire, preprint IHES M/05/24, ''Acta Mathematica'', '''199''' (2007), pp. 199--262. | * B. Deroin, V. Kleptsyn, A. Navas, [http://arxiv.org/abs/math/0506063 Sur la dynamique unidimensionelle et régularité intermédiaire], preprint IHES M/05/24, ''Acta Mathematica'', '''199''' (2007), pp. 199--262. | ||
* V. Kleptsyn, A. Navas, A Denjoy type theorem for commuting circle diffeomorphisms with derivatives having different Hölder differentiability classes, ''Moscow Math. Journal'' '''8''' (2008), no. 3, 477-492, 616. | * V. Kleptsyn, A. Navas, [http://arxiv.org/abs/0704.1006 A Denjoy type theorem for commuting circle diffeomorphisms with derivatives having different Hölder differentiability classes], ''Moscow Math. Journal'' '''8''' (2008), no. 3, 477-492, 616. | ||
* B. Deroin, V. Kleptsyn, A. Navas, On the question of ergodicity for minimal group actions on the circle, ''Moscow Math. Journal'', '''9''' (2009), no. 2, pp. 263--303. | * B. Deroin, V. Kleptsyn, A. Navas, [http://arxiv.org/abs/0806.1974 On the question of ergodicity for minimal group actions on the circle], ''Moscow Math. Journal'', '''9''' (2009), no. 2, pp. 263--303. |
Версия от 06:16, 8 июля 2010
Foliations
- Alexey Glutsyuk and Mikhail Lyubich. Unique ergodicity of horospheric foliations revisited.
- T. Golenishcheva-Kutuzova, V. Kleptsyn, Minimality and ergodicity of a generic analytic foliation of C², Ergodic Theory and Dynamical Systems, 28 (2008), no. 5, pp. 1533--1544.
- B. Deroin, V. Kleptsyn, Random conformal dynamical systems, Geometry and Functional Analysis, 17 (2007), no. 4, pp. 1043-1105.
Attractors & time averages
- Yu. Ilyashenko, A. Negut. Invisible parts of attractors. Nonlinearity 23 (2010) 1199—1219. [1]
- V. Kleptsyn, An example of non-coincidence of minimal and statistical attractors, Ergodic Theory and Dynamical Systems, 26 (2006), no. 3, pp. 759-768.
- T. Golenishcheva-Kutuzova, V. Kleptsyn, Non-convergence of the Krylov-Bogolubov procedure for the Bowen's example, Mathematical Notes, 82 (2007), no. 5, pp. 678—689.
- Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. Journal of Fixed Point Theory and Applications, 3 (2008), no. 2, pp. 449--463.
Lyapunov exponents
- V. Kleptsyn, M. Nalski, Stability of existence of non-hyperbolic measures for C¹-diffeomorphisms, Functional Analysis and its Applications, 41 (2007), no. 4, pp. 271--283.
One-dimensional dynamics
- B. Deroin, V. Kleptsyn, A. Navas, Sur la dynamique unidimensionelle et régularité intermédiaire, preprint IHES M/05/24, Acta Mathematica, 199 (2007), pp. 199--262.
- V. Kleptsyn, A. Navas, A Denjoy type theorem for commuting circle diffeomorphisms with derivatives having different Hölder differentiability classes, Moscow Math. Journal 8 (2008), no. 3, 477-492, 616.
- B. Deroin, V. Kleptsyn, A. Navas, On the question of ergodicity for minimal group actions on the circle, Moscow Math. Journal, 9 (2009), no. 2, pp. 263--303.