Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.

Papers: различия между версиями

Материал из DSWiki
Перейти к навигацииПерейти к поиску
Нет описания правки
(+arXiv links.)
Строка 2: Строка 2:
* Alexey Glutsyuk and Mikhail Lyubich. [http://wiki.dynsys.org/misc/uerghyp.pdf Unique ergodicity of horospheric foliations revisited].
* Alexey Glutsyuk and Mikhail Lyubich. [http://wiki.dynsys.org/misc/uerghyp.pdf Unique ergodicity of horospheric foliations revisited].
* T. Golenishcheva-Kutuzova, V. Kleptsyn, Minimality and ergodicity of a generic analytic foliation of C², ''Ergodic Theory and Dynamical Systems'', '''28''' (2008), no. 5, pp. 1533--1544.
* T. Golenishcheva-Kutuzova, V. Kleptsyn, Minimality and ergodicity of a generic analytic foliation of C², ''Ergodic Theory and Dynamical Systems'', '''28''' (2008), no. 5, pp. 1533--1544.
* B. Deroin, V. Kleptsyn, Random conformal dynamical systems, ''Geometry and Functional Analysis'', '''17''' (2007), no. 4, pp. 1043-1105.
* B. Deroin, V. Kleptsyn, [http://arxiv.org/abs/math/0506204 Random conformal dynamical systems], ''Geometry and Functional Analysis'', '''17''' (2007), no. 4, pp. 1043-1105.


=== Attractors & time averages ===
=== Attractors & time averages ===
Строка 14: Строка 14:


=== One-dimensional dynamics ===
=== One-dimensional dynamics ===
* B. Deroin, V. Kleptsyn, A. Navas, Sur la dynamique unidimensionelle et régularité intermédiaire, preprint IHES M/05/24, ''Acta Mathematica'', '''199''' (2007), pp. 199--262.
* B. Deroin, V. Kleptsyn, A. Navas, [http://arxiv.org/abs/math/0506063 Sur la dynamique unidimensionelle et régularité intermédiaire], preprint IHES M/05/24, ''Acta Mathematica'', '''199''' (2007), pp. 199--262.
* V. Kleptsyn, A. Navas, A Denjoy type theorem for commuting circle diffeomorphisms with derivatives having different Hölder differentiability classes, ''Moscow Math. Journal'' '''8''' (2008), no. 3, 477-492, 616.
* V. Kleptsyn, A. Navas, [http://arxiv.org/abs/0704.1006 A Denjoy type theorem for commuting circle diffeomorphisms with derivatives having different Hölder differentiability classes], ''Moscow Math. Journal'' '''8''' (2008), no. 3, 477-492, 616.
* B. Deroin, V. Kleptsyn, A. Navas, On the question of ergodicity for minimal group actions on the circle, ''Moscow Math. Journal'', '''9''' (2009), no. 2, pp. 263--303.
* B. Deroin, V. Kleptsyn, A. Navas, [http://arxiv.org/abs/0806.1974 On the question of ergodicity for minimal group actions on the circle], ''Moscow Math. Journal'', '''9''' (2009), no. 2, pp. 263--303.

Версия от 06:16, 8 июля 2010

Foliations

Attractors & time averages

  • Yu. Ilyashenko, A. Negut. Invisible parts of attractors. Nonlinearity 23 (2010) 1199—1219. [1]
  • V. Kleptsyn, An example of non-coincidence of minimal and statistical attractors, Ergodic Theory and Dynamical Systems, 26 (2006), no. 3, pp. 759-768.
  • T. Golenishcheva-Kutuzova, V. Kleptsyn, Non-convergence of the Krylov-Bogolubov procedure for the Bowen's example, Mathematical Notes, 82 (2007), no. 5, pp. 678—689.
  • Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. Journal of Fixed Point Theory and Applications, 3 (2008), no. 2, pp. 449--463.

Lyapunov exponents

  • V. Kleptsyn, M. Nalski, Stability of existence of non-hyperbolic measures for C¹-diffeomorphisms, Functional Analysis and its Applications, 41 (2007), no. 4, pp. 271--283.

One-dimensional dynamics