Dynamical Systems seminar is supported by RFBR project 20-01-00420-a and Laboratory Poncelet.


Материал из DSWiki
Версия от 07:10, 5 января 2021; Ivan Shilin (обсуждение | вклад)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигацииПерейти к поиску


"Global bifurcations in generic one-parameter families on S^2" by V. Starichkova.

"Global bifurcations in generic one-parameter families with a separatrix loop on S^2" by Yu. Ilyashenko and N. Solodovnikov.

"Global bifurcations in generic one-parameter families with a parabolic cycle on S^2" by N. Goncharuk, Yu. Ilyashenko, and N. Solodovnikov. (arXiv:1707.09779)


Foliations in complex plane

Attractors & time averages

Thick attractors
  • Yu. Ilyashenko, Thick Attractors of Step Skew Products, Regular and Chaotic Dynamics, Vol. 15, Nos. 2-3, pp. 328-334
Invisible attractors
Other examples of pathological attractors
  • V. Kleptsyn, An example of non-coincidence of minimal and statistical attractors, Ergodic Theory and Dynamical Systems, 26 (2006), no. 3, pp. 759-768.
  • T. Golenishcheva-Kutuzova, V. Kleptsyn, Non-convergence of the Krylov-Bogolubov procedure for the Bowen's example, Mathematical Notes, 82 (2007), no. 5, pp. 678—689.
Ittai Kan example
  • Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. Journal of Fixed Point Theory and Applications, 3 (2008), no. 2, pp. 449--463.
Special Ergodic Theorem

Lyapunov exponents

  • A. S. Gorodetski, Yu. S. Ilyashenko, V. A. Kleptsyn, M. B. Nalsky, Nonremovable Zero Lyapunov Exponents, Funkts. Anal. Prilozh., 39:1 (2005), 27–38
  • V. Kleptsyn, M. Nalski, Stability of existence of non-hyperbolic measures for C¹-diffeomorphisms, Functional Analysis and its Applications, 41 (2007), no. 4, pp. 271--283.

One-dimensional dynamics

Slow-fast systems

Limit cycles

Periodic orbits