
Избранные сюжеты из теории динамических
систем

Ю. Ильяшенко, А. Ускова

Эти лекции были прочтены Ю. Ильяшенко на 26й летней школе семинара “Дина-
мические системы” в Ратмино 23.06 – 02.07.2025. Они были записаны и набраны А.
Усковой; все многочисленные рисунки также приготовлены ею.

Лекция 1. Ретроспектива: XVI проблема Гильберта

1.1 Стратегия Петровского–Ландиса

Рассмотрим уравнение ẋ = P2(x), где P2 - векторный многочлен степени 2 (x ∈ R2).

Как оценить сверху количество предельных циклов?

- Идея: шевелить параметры и следить за циклами.

- Проблема: циклы могут сливаться и исчезать.

- Идея Петровского: определить комплексный предельный цикл и шевелить уже ком-
плексную картинку.

- Проблема: есть “плохие” наборы коэффициентов, например, при которых комплекс-
ный предельный цикл садится на сепаратрису.

- Идея Петровского: таких наборов “немного” (их комплексная коразмерность рав-
на 1), так что их можно обойти.

Стратегия Петровского-Ландиса (коротко):

- ищем уравнение с большим количеством предельных циклов;

- строим путь в пространстве коэффициентов от него к окрестности интегрируемого
уравнения (у которого предельных циклов нет совсем, но в окрестности которого
число циклов можно оценить сверху);

- проблема: при проходе по пути теряем много предельных циклов.

1.2 Комплексный предельный цикл

Рассмотрим уравнение ż = P2(z), где P2 - векторный многочлен степени 2 (z ∈ C2).
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Его решение - такая функция ϕ(t) : D → C2, что ϕ̇(t) ≡ P2(ϕ(t)).

Определим Σ := {a|P2(a) = 0}. C2 \Σ разбито решениями уравнения ż = P2(z) на ри-
мановы поверхности. Это слоение: окрестность каждой неособой точки биголоморф-
но эквивалентна произведению дисков [это комплексная теорема о выпрямлении].

На наивном уровне комплексный цикл - это нестягиваемая вещественная петля на
римановой поверхности.

Комплексное отображение первого возвращения (отображение Пуанкаре) у гомотоп-
ных петель с одной и той же базисной точкой совпадает. Отображения Пуанкаре
для двух свободно гомотопных петель с разными базисными точками аналитически
сопряжены. Поэтому уместно называть комплексным циклом класс свободной го-
мотопии петель на фазовой кривой.

Комплексный предельный цикл соответствует изолированной неподвижной точ-
ке отображения Пуанкаре.

1.3 Подготовительная теорема Вейерштрасса и теорема о со-
хранении цикла

Теорема 1. Пусть f(z, ε) - голоморфная функция, пусть f(z, 0) имеет n-кратный
ноль по z.

Тогда вся функция равняется многочлену Вейерштрасса, умноженному на "поправ-
ку":

f(z, ε) = Pε(z) ·H(z, ε), где

- Pε(z) = zn + qε(z), deg qε < n, q0(z) ≡ 0;

- H(z, ε) - голоморфная, H(0, 0) 6= 0.

Мношочлен qε(z): q0(z) ≡ 0 называется многочленом Вейерштрасса.

Следствие теоремы: комплексный предельный цикл не исчезает при малом изменени
параметров.
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Петровский и Ландис в своей работе сформулировали теорему о сохранении цик-
лов: при движении вдоль пути в пространстве коэффициентов комплексный цикл
сохраняется, путь при необходимости можно шевелить, уходя от “плохих” наборов
коэффициентов и сохраняя циклы.

Идея их доказательства такова: значения параметров, при которых можно продол-
жить цикл, открыто (в силу теоремы Вейерштрасса); но одновременно замкнуто:
выбирая правильного представителя класса гомотопий цикла на соответствующей
римановой поверхности можно добиться того, что его длина не будет расти, и это
дает возможность утверждать, что в пределе также будет существовать комплексный
цикл.

Доказательство неудлинения цикла у Петровского и Ландиса оказалось ошибочным!
Задача о сохранении циклов все еще открыта.

Лекция 2. Материализация резонансов и быстрая эво-
люция предельных циклов

2.1 Материализация резонансов (по Арнольду и Фату)

Пусть f : z 7→ λz + . . . - голоморфное отображение, 0 - его неподвижная точка.

Свойства f во многом зависят от |λ|. Здесь и ниже λ 6= 0.
Теорема 2. При |λ| 6= 1, 0 - гиперболическая неподвижная точка, а f аналитически
эквивалентно своей линейной части fo : z 7→ λz.

Случай |λ| = 1, то есть λ = e2πiϕ распадается на два подслучая.
Теорема 3. ϕ /∈ Q⇐⇒ существует формальный сопрягающий ряд h: f = h−1◦f0◦h,
где f0 – линейная часть f .

Теорема 4. Если ϕ ∈ Q, то есть ϕ =
p

q
, f формально эквивалентно

f1 = λz
(

1 +
∑

aku
k
)
,

где u = zq – резонансный моном.

Рассмотрим семейство уравнений (1):

fε = λ(1 + ε)z + Fε(z), (1)

где λ = e2πi
p
q , Fε(z) = O(z2).

Теорема 5. В семействе (1) от нуля отщепляется периодическая орбита перио-
да q.

Иллюстрация:

Пусть fε = λ(1 + ε)z + azq+1.

Тогда f qε = λq(1 + ε)qz + bzq+1 + . . . .

Заметим, что λq = 1; обозначим (1 + ε)q = 1 + δ. Получаем:
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f qε = (1 + δ)z + bzq+1 + . . . .

Неподвижные точки соответствуют решениям уравнения f qε (z) = z. То есть, прене-
брегая старшими членами:

(1 + δ)z + bzq+1 = z ⇒ δz + bzq+1 = 0⇒ zq = −
δ

b
.

Предложение 1. Если f0 = fε|ε=0, то f q0 = z + azq+1 + . . . .

Доказательство. f q0 = h−1 ◦ f q1 ◦ h. У f q1 в разложении в ряд нет членов между z и
zq+1, значит, нет их и у f q0 .

2.2 Философия Арнольда

- Вопрос сходимости линеаризующего ряда при ϕ /∈ Q: теоремы Зигеля и Брюно;
Йоккоз в своих работах доказал необходимость условия теоремы Брюно.

- Арнольд: расходимость линеаризующего ряда объясняется геометрически?

Пусть λ = e2πiϕ, где ϕ – Лиувиллево.

Определим λε = e2πi(ϕ+ε). Рассмотрим семейство уравнений:

f̃ε = (ϕ+ ε)z + . . . .

Идея Арнольда:

(ϕ + ε) принимает бесконечно много рациональных значений, следовательно, при
ε→ 0 вокруг нуля накапливаются периодические орбиты. Однако у линейного отоб-
ражения такой картинки не возникает.

(Идея реализована А.С.Пяртли и развита Перец-Марко, однако условия лиувилле-
вости λ сильнее, чем у Брюно и Йоккоза).

2.3 Быстрая эволюция предельных циклов

Стратегия Петровского–Ландиса:
Определение 1. Многочлен Hn+1 называют ультраморсовским, если он морсов-
ский, и его линии уровня трансверсальны бесконечности.

Рассмотрим интегрируемое уравнение dH = 0, гдк H - ультраморсовский.

По Николаю Димитрову: рассмотрим ωε = dH + εω = 0, где ε ∈ (C, 0). При сколь
угодно малом ε есть комплексный цикл ωε = 0, который при ε → 0 покидает “боль-
шую область” и не “садится” на циклы dH = 0.

Что же это за цикл?

Возьмем цикл δ. Его отображение Пуанкаре – fε = z + εg(z, ε).

Критерий Пуанкаре–Понтрягина:

Цикл δ рождает предельный цикл, если I(h) ≡
∫

δ(h)⊂(H=h),
δ=δ(h0)

ω, I(h0) = 0 и I(h) 6= 0.
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Семейство отображений Пуанкаре (после замены z 7→ z + g(ε)):

P (z, ε) = z + εF (z, ε),

F (0, ε) = 0, F ′(0, ε) 6= 0.

Возникает материализация резонансов в “большинстве” семейств:

∃ последовательность mk → +∞, что Pδ(z, εk) имеет периодическую орбиту, близкую
к 0, периода mk.
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У отображения z 7→ z+εz+. . . цикл δm(ε) близок к кривым интегрального уравнения,
но при ε→ 0 он сбежит из любой окрестности δ.

Философское противоречие!

2.4 Усиление

Теорема 6 (Димитров). Цикл δm(ε) при ε → 0 не определен при достаточно ма-
лых ε, он выходит на ∂E.

Лекция 3. Одна теорема о сохранении

3.1 Отображение Эно

Отображение Эно имеет следующий вид:

H : (x, y) 7→ (y, P (y)− ax) (2)

• Это автоморфизм при a 6= 0 (при a = 0 проваливаемся в одномерие).

• Якобиан отображения:
∣∣∣∣ 0 1
−a P ′(y)

∣∣∣∣ = a.

• Неподвижные точки отображения лежат на диагонали:

(x, y) = (y, P (y)− ax)⇒ x = y, P (y) = (a+ 1)y.

3.2 Отступление: области Фату

U ( C2 называется областью Фату, если существует биголоморфное отображение
G : C2 → U .

Построим область Фату с помощью отображения Эно H.

Пусть A, B – неподвижные точки H, и J =
∂H

∂(x, y)
(A) ∼ diag(λ, µ), причем |λ| > 1,

|µ| > 1.
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Тогда A – гиперболическая точка, и H в окрестности A аналитически эквивалентно

своей линейной части J =

(
λ 0
0 µ

)
.

Определим G как сопрягающее отображение для J и H. G продолжается на все C2:
итерации J достигают любой точки в прообразе. Однако G(C2) 6= C2, так как в образе
G не должно быть неподвижных точек, отличных от A (у линейного J неподвижная
точка ровно одна), значит, B /∈ G(C2).

Значит, U = G(C2) – область Фату.

3.3 Гомоклинические точки

Имеются две неподвижные точки диффеоморфизма типа "седло у одного мульти-
пликатор больше 1, у другого - меньше. У них есть сепаратрисы - инвариантные
одномерные многообразия. [Теорема Адамара-Перона!]
Определение 2. Гомоклиническая точка - это точка пересечения сепаратрис.
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3.4 Теорема о сохранении

В случае отображения Эно, неподвижные точки алгебраически зависят от парамет-
ров, сепаратрисы и, следовательно, гомоклинические точки - трансцендентно. Тео-
ретически возможна ситуация, в которой при проходе по пути в пространстве пара-
метров длина сепаратрисы постоянно растет, становится бесконечной, и гомоклини-
ческая точка исчезает.

Следующая теорема отрицает последний сценарий.

Пусть α0 := (H0, p0, q0, λ0, µ0), где

• H0 - исходное фиксированное отображение;

• p0, q0 - его неподвижные точки;

• λ0, µ0 - мультипликаторы неподвижных точек, причем |λ0| < 1, |µ0| > 1.
Теорема 7. Для любого пути в пространстве параметров

γ : I →Mpot = {(H, p, q, λ, µ) : |λ| < 1, |µ| > 1},

и любого ε > 0 существует ε-близкий к γ путь γε с тем же началом, вдоль кото-
рого гомоклиническая точка продолжается.

3.5 Точки Фату и Плеснера

Пусть f : D → C - голоморфная функция. Рассмотрим в D угол Штольца S с
вершиной в ζ.
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Определение 3. ω - предельное значение f в угле Штольца S, если суще-
ствует последовательность zn ∈ S, zn → ζ такая, что f(zn)→ ω.
Определение 4. ζ - точка Фату, если f имеет в ζ единственное предельное
значение в Ĉ.
Определение 5. ζ - точка Плеснера, если множество предельных значений в ζ
совпадает с C.
Теорема 8. (Плеснер) Для голоморфной функции f почти все точки на границе
диска - либо точки Фату, либо точки Плеснера.

3.6 Параметризация сепаратрис

Теорема 9. Для любой сепаратрисы W комплексного седла существует биголо-
морфное отображение τ : C→ W .

Как следствие, каждой гомоклинической точке соответствует пара (τ1, τ2) ∈ C2, го-
ломорфно зависящая от α ∈Mpot.

[Тут под ковер заметена аккуратистика про однозначность выбора этих координат].
Теорема 10 (Теорема об отображении Эно). Для отображения Эно существует
такой компакт в C2, что все гомоклинические точки лежат в нем.

В несколько шагов из этой теоремы можно получить теорему о продолжении.

3.7 Вновь стратегия Петровского–Ландиса

Теорема 11. Типичное отображение Эно обладает свойством Купки-Смейла (не
имеет гомоклинических касаний).
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Прежде чем переходить к доказательству, сформулируем условие конусов, выполне-
ние которого гарантирует гиперболичность.

Условие конусов выполнено, если C+
x под действием f растягивается и целиком

оказывается в C+
y , а C−y под действием f−1 растягивается и целиком оказывается в

C−x . (Тем самым сепаратриса W u лежит в C+, сепаратриса W s – в C−.)

Доказательство теоремы. Пусть есть область (точка и ее окрестность) с гомокли-
ническим касанием. Пустим из нее кривую γ и поведем ее в область гиперболичности.
По условию конусов в этой области гомоклинического касания нет, иначе бы пересе-
кались конусы C+ и C−.
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Однако вдоль кривой гомоклиническое касание должно сохраняться, так как это
аналитическое условие на определитель (требуем коллинеарность), зависящее от па-
раметров. Получили противоречие.

Лекция 4. Одновременная униформизация и теорема
о сохранении

4.1 Преобразование наложения

Универсальная накрывающая с данной базисной точкой O – это пространство клас-
сов гомотопных путей (т.е. кривых) с началом в точке O.

Преобразование наложения добавляет ко всем путям петлю из O в O.

[Прибавили к пути голубую петлю и получили синий путь.]

Преобразование наложения - отображение универсальной накрывающей в себя. По-
сле униформизации получаем биголоморфное отображение единичного диска в себя.
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Всякое биголоморфное отображение диска в себя - дробно-линейное преобразование.
Тем самым мы получаем на самом деле отображение фундаментальной группы в
подгруппу группы дробно-линейных преобразований диска в себя. Эта подгруппа
дискретна (ее орбиты накапливаются к границе диска).

Исходная риманова поверхность - фактор диска по этой подгруппе дробно-линейных
преобразований - преобразований наложения!
Предложение 2. Не бывает одновременной униформизации на единичном диске.

Доказательство. Пусть H : C2 → C - многочлен. Пусть ϕh = H−1(h).

Предположим, что мы одновременно униформизовали близкие ϕh и ϕh′ на единичный
диск. Возникла фуксова группа преобразований Gh.

Это группа дробно-линейных преобразований. Они зависят от h, но все отображают
единичную окружность в единичную окружность. Такая голоморфная функция мо-
жет быть только постоянной по h: заменим круг на полуплоскость, тогда функция
голоморфна по h, но при всех h принимает вещественные значения на вещественной
прямой; такая функция может быть только постоянной.

Получается, что для всех h группа Gh одна и та же - постоянная. Но тогда линии
уровня H конформно эквивалентны, однако известно, что это не так. Противоречие.

4.2 Что такое одновременная униформизация?

Рассмотрим уравнение ż = P (z), z ∈ C2.

Пусть для b ∈ C2 ϕb – фазовая кривая, проходящая через b, ϕ̂b - универсальная
накрывающая с базисной точкой b, B – трансверсальное сечение фазовых кривых в
окрестности точки b.

Определим:

• M =
⋃
b∈B

ϕb,

• M̂ =
⋃
b∈B

ϕ̂b,

• π : M̂ →M .
Теорема 12. M̂ - комплексное многообразие, для которого π локально биголоморф-
но.

Важная ремарка: M̂ – косой цилиндр!
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Канонический косой цилиндр

M0 ⊂ B × C.

Каноническая проекция: π0 : M0 → B, ψb = π−10 (b) – топологический диск.

В некотором смысле косой цилиндр – это набор зависящих от параметра топологи-
ческих дисков.

Одновременная униформизация

Биголоморфное отображение H – одновременная униформизация, если диаграмма
ниже коммутативна. Слой косого цилиндра переходит в топологический диск.

M̂ M0

B B

H

π π0

id

4.3 Пример

B(0; 1) ⊂ C2.
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Одновременная униформизация:

(z, w) 7→ (z, ln(w − w0)) (3)

Канонический косой цилиндр выглядит так:

Определение 6. Канонический косой цилиндр имеет непрерывную границу, если
каждый слой есть топологический предел близких слоев.
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4.4 Одновременная униформизация и теорема о сохранении

"Теорема"(детали опущены). Одновременная униформизация + непрерывность
границы канонического косого цилиндра + условия на преобразование наложения и
проч. ⇒ теорема о сохранении цикла.

Объяснение на уровне примера из 4.3

Имеется цикл, зависящий от параметра. С ним связано преобразование наложения,
которое голоморфно зависит от параметра. Оно переводит слой соответствующего
канонического цилиндра в себя.

Хотим доказать, что при выходе на границу красного диска, цикл не может разру-
шаться, если выполняются два условия.

Предположим, что у нас есть семейство римановых поверхностей, на них есть семей-
ство циклов, и предположим, что это семейство продолжается до границы красного
диска (исключительно). Хотим продолжить циклы в точки границы.

Два условия:

- циклам, которые соответствуют красному диску в базе, соответствует преобразова-
ние наложения; предположим, что при подходе к границе красного диска они имеют
предел (как в примере);

- предоположим, что ОУ лучше, чем в примере, и соответствующий канонический
косой цилиндр имеет непрерывную границу.

Тогда предельное преобразование наложения тоже будет биголоморфным отображе-
нием универсальной накрывающей над соответствующим слоем в себя. И проекция
кривой, которая соединяет образ и прообраз, будет циклом на слое, который соот-
ветствует точке на границе красного диска.

"условия на преобразование наложения и проч."

Рассмотрим ситуацию: ż = P (z), z ∈ C2, P вещественно. Есть особая точка 0 ти-
па центр, все вещественные фазовые кривые в окрестности 0 замкнуты. Циклы в
окрестности 0 имеют тождественное преобразование монодромии, и так и называют-
ся - тождественные циклы. Но семейство вещественных тождественных циклов
обычно не покрывает всю плоскость, а ограничено сепаратрисным многоугольником.

Эту вещественную картинку можно погрузить в комплексную плоскость. Тогда мо-
жем начальное условие продолжать по кривой, которая ушла из вещественной плос-
кости, а тождественнный цикл с начальным условием на этой кривой сохранится. До
каких пор можно продолжить цикл вдоль такой кривой? Будут ли тождественные
комплексные циклы выживать для почти всех начальных условий?

Рассмотрим кривую и трансверсальный ей диск. Пусть для начальных условий в
диске меньшего радиуса внутри этого трансверсального диска тождественный цикл
есть. Попытаемся продолжить его до границы этого меньшего диска.
Гипотеза 1. Для полиномиального дифференциального уравнения на комплексной
плоскости ż = P (z), имеющего тождественный цикл и плотные комплексные фа-
зовые кривые, выполнено следующее.

Пусть B ⊂ C2 – диск, трансверсальный фазовым кривым. Тогда
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• M̂ допускает одновременную униформизацию H : M̂ →M0.

• M0 имеет непрерывную границу.

• M0 = {(z, w)}, M0 ⊂ B ×DR, M0 ⊃ B ×Dr, где Dr и DR – диски с центром в
нуле с радиусами r < R.

Предложение влечет за собой следующую теорему.
Теорема 13. Пусть γb – цикл на ϕb, непрерывный по B и определенный при всех
b ∈ D ⊂ D b B. Тогда цикл γb продолжается на почти все слои ϕb для b ∈ ∂D.

Для доказательства теоремы потребуются теоремы Кёбе об искажении.
Теорема 14 (Теоремы Кёбе об искажении). Пусть f : D → U ⊂ C – конформное
отображение единичного диска. Пусть f(0) = 0, f ′(0) = 1. Тогда f(D) ⊃ D0, 1

4
и

f(Dr) ⊂ DR(r) при R(r) = r
(1−r)2 .

Набросок доказательства Теоремы 13. Пусть fb : ψb → ψb - преобразование наложе-
ния, соответствующее γb.

Из теоремы Кёбе следует, что fb(0) и f ′b(0) ограничены, fb(0) по модулю меньше R.

Вспомним еще две полезные теоремы:

• Теорема Фату: ограниченная голоморфная функция в диске имеет почти всюду
угловые пределы.

• Теорема Привалова: если ограниченная голоморфная функция в диске стре-
мится к 0 на множестве границы положительной меры, то сама функция есть
тождественный ноль.

Применяя эти теоремы и теорему Кёбе получаем, что у преобразования наложения
значения fb(0) ограничены и отделены от нуля, и производные в нуле ограничены и
отделены от нуля.

Следовательно, по теореме Асколи-Арцела, для последовательности bn ∈ D, сходя-
щейся к b0 ∈ ∂D, fbn → fb0 в компактах.

Лекция 5. Непродолжимость голономии

5.1 Пример

ṙ = r

(t, r) ∈ S1 × R
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Рис. 1: Отображение h
не продолжается в точку r = 0.

5.2 Уравнение Риккати

ω̇ = A(t)ω, A(t) =

(
a(t) b(t)
c(t) d(t)

)
, ω =

(
ω1

ω2

)
, z =

ω1

ω2

ż =
ω̇1 ω2 − ω̇2 ω1

ω 2
2

=
(aω1 + b ω2)ω2 − (c ω1 + dω2)ω1

ω 2
2

= b+ (a− d) z − c z2.

В отличие от исходного уравнения, где монодромия была линейна, в уравнении Рик-
кати монодромия дробно-линейна.

aj - полюса коэффициентов.

Рис. 2: ∆1, ...,∆m : (Γ1 = C)→ Γ1
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Проблема Римана-Гильберта

ω̇ =
A1

t− a1
ω +

A2

t− a2
ω; M1,M2 реализуются

Любая конечно порожденная группа дробно-линейных преобразований реализуется
уравнениями Риккати.

Рис. 3: На трансверсали Γ1 образуется последовательность дуг (каждая из которых
отображается h в некоторую петлю на Γ2), которая сходится к некоторой точке.

Теорема 15. h : Γ1 → Γ2 не продолжается вдоль специальных кривых, конец кото-
рых – предельная точка группы монодромии.

5.3 Линейные неавтономные уравнения 1 порядка

ż = a(t) z + b(t)

a(t) =
m∑
j=1

λj
t− aj

Монодромии задаются аффинными преобразованиями.

∆j(z) = Aj z +Bj

Aj = e2πiλj

Пусть неподвижные точки Cj отображений ∆j все различны и не лежат на одной
прямой; λj чисто мнимые и такие, что

Aj ∈ (0, 1)

Тогда предельные точки группы, порожденной отображениями ∆j - весь треугольник
C1C2C3.
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Рис. 4: t0 6= aj, Γ1 = (t = t0)
Рис. 5: Предельные точки весь тре-
угольник.

Рис. 6: В целый треугольник не продолжается голономия.

19



5.4 Подобие соленоида

ż = P (z), z ∈ C2

Рис. 7: Символическая динамика на трансверсали Γ1.

Каждой последовательности из 0 и 1 соответствует предельная точка полугруппы
G+(∆1,∆2). Множество предельных точек Канторово. В него не продолжаются отоб-
ражения голономии h : Γ1 → Γ2.

Дешевые комплексные циклы.

Лекция 6. Одновременная униформизация клейновы-
ми группами

6.1 Семейство некритических слоев-линий уровня многочлена
от двух переменных

Пусть H : C2 → C - ультраморсовский многочлен. Пусть b ∈ B ⊂ C - некритическое
значение H с окрестностью B.
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Обозначим:

• ϕb = H−1(b);

• M = H−1(B);

• ϕ̂b – универсальная накрывающая над ϕb с базисной точкой b;

• M̂ =
⋃
b∈B

ϕ̂b.

Напомном, что канонический косой цилиндр M0 ⊂ B × Ĉс проектированием π0 :
B × Ĉ→ B и слоями ψb = π−10 (b) определен в п. 4.2.

Теорема 16. Существует канонический косой цилиндр M0 и биголоморфное
отображение (одновременная униформизация) H : M̂ →M0, переводящее ϕ̂b в ψb.

Другими словами, коммутативна диаграмма:
M̂ M0

B B

H

π π0

id
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6.2 Почти комплексные структуры (ПКС) и уравнения Бель-
трами

Определение 7 (Первое определение почти комплексной структуры). Почти ком-
плексная структура на поверхности ϕ – это набор отображений Jz : Tzϕ → Tzϕ
таких, что J2

z = −E.
Определение 8 (Второе определение почти комплексной структуры). Почти ком-
плексная структура на поверхности ϕ – это форма типа (1,0) в комплексном смыс-
ле: ω(z) = a(z)dz + b(z)dz, |a| > |b|.
Определение 9. Функция f называется голоморфной в смысле почти комплексной
структуры, если df(z) = cω(z).

Как зная ПКС “вспомнить” комплексную структуру? Необходимо в окрестности каж-
дой точки найти функцию, голоморфную в смысле ПКС!

Требуем df(z) = fzdz + fzdz ∼ adz + bdz, то есть

fz(z)

fz(z)
=
b(z)

a(z)
= µ(z) (4)

Это уравнение Бельтрами; µ(z) называют коэффициентом Бельтрами. В силу
определения ПКС, |µ| < 1.
Теорема 17. Если |µ| < q < 1, То уравнение Бельтрами локально разрешимо.

В случае замены координат z 7→ g(z), коэффициент Бельтрами меняется следующим

образом: µ 7→ µ ◦ g
gz

gz
. В случае отсутствия глобальной координаты говорим тогда не

про коэффициент, а про дифференциал Бельтрами.

Два решения одного уравнения Бельтрами связаны: одно есть голоморфная функция
от другого!
Теорема 18 (Альфорс–Берс, 1960). Если дифференциал Бельтрами голоморфен по
параметру на всей Ĉ, то решения уравнения Бельтрами тоже голоморфны по это-
му параметру.

6.3 Квазиконформные деформации
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Пусть F : S0 → S - квазиконформное отображение, а именно dF = adz+bdz, |b| < |a|,
| b
a
| отделен от 1. Пусть S0 = D�G, где D - единичный круг, G - фуксова группа, а на

S есть комплексная структура.

Рассмотрим ω := dF как форму на S0. С помощью пулбэка комплексная структура
с S может быть перенесена на S0. Тем самым можем получить на S0 ПКС, а далее
поднять ее на Ŝ0 и на D с помощью униформизации.

Соответствующий дифференциал Бельтрами µ =
ωz

ωz
на диске D G-инвариантен. В

таком случае, для всякого дробно-линейного преобразования g ∈ G ω ◦ g - тоже
решение уравнения Бельтрами.

Продолжим дииференциал µ на всю сферу - нулем - и возьем ω как решение соот-
ветствующего уравнения Бельтрами. ω ◦ g - тоже решение этого уравнения.

Но одно решение уравнения Бельтрами – голоморфная функция от другого решения.
Значит, существует такая голоморфная функция g1 : Ĉ → Ĉ, для которой ω ◦ g =
g1 ◦ ω. Следовательно, g1 – тоже дробно-линейное преобразование.

Соответствующая группа G1 = {g1} изоморфна G.

Более того, ω(D)�G1
= S.

G1 называют квазифуксовой группой. Обозначим через D дополнение к замкну-
тому единичному диску. Группа G1 дискретно действует на области Ω = ω(D ∪D).
Дополнение к Ω называется областью разрывности Λ. Имеем:

(D ∪D)�G = S0 + S0 (5)

Ω�G1
= S + S0 (6)

Говорят, что квазифуксова группа G1 униформизует пару S, S0.
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6.4 Одновременная униформизация

Вспомним картинку из начала лекции. Пусть H и ϕb - те же, что и в п. 6.1.

Введем метрику Фубини - Штуди на проективном замыкании комплексной плоско-
сти. Возьмем комплексные нормали к одному слою ϕb0 . Можно доказать, что они
задают диффеоморфизм слоя на близкие. Так как это комплексные прямые со своей
комплексной структурой, сам диффеоморфизм не будет аналитическим, но диффе-
ренциал Бельтрами будет голоморфно зависеть от параметра.

Пусть G0 - фуксова группа, униформизующая ϕb0 : D/G0 = ϕb0 . Рассмотрим по-
строенный выше голоморфно зависящий от b дифференциал Бельтрами в D. Про-
должим его нулем в D̄. Получим на всей сфере Римана дифференциал Бельтрами,
голоморфно зависящий от b. Пусть ωb - решение соответствующего уравнения Бель-
трами, голоморфно зависящее от b. Оно существует по теореме Альфорса - Берса.
Положим:

Gb = ωb ◦G0 ◦ (ωb)
−1.

Фактор группы Gb - это ϕb + ϕ̄b0 . Положим: ψb = ωb(D), M0 = ∪b∈Bψb. Тогда M0

биголоморфно эквивалентно пространству универсальных накрывающих над слоями
ϕb; одновременная униформизация слоев, близких к ϕb0 , осуществлена.

Лекция 7. Клейновы группы и униформизация

7.1 Фуксовы и квазифуксовы группы

Пусть G – группа дробно-линейных преобразований, конечно порожденная m обра-
зующими, сохраняющими R. Такая группа называется фуксовой.
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Обозначим Ω = H + L.

Тогда Ω�G = S0 + S0, и S0, S0 - симметричные римановы поверхности типа (g, n).

Дифференциал Бельтрами, равный µ на H и нулю на L, инвариантен относитель-
но G.

Пусть h - решение уравнения Бельтрами; тогда G1 = h ◦G ◦ h−1 - это квазифуксова
группа.

Положим Ω1 = h(Ω). Ω1�G1
= S + S0.

7.2 Теорема конечности Альфорса

Теорема 19 (1964). Пусть G – любая конечно порожденная клейнова группа, Ω –
максимальное открытое множество, на котором она действует дискретно. Тогда
Ω�G представляет собой конечное число римановых поверхностей конечного типа.

Доказательство теоремы. Известно, что в случае гиперболических поверхностей

• dimC(риманова поверхность рода g) = 3g − 3;

• dimC(риманова поверхность типа (g, n)) = 3g − 3 + n.

Если у двух клейновых групп факторы не конформно эквивалентны, то и группы не
эквивалентны.

[Далее частное рассуждение, иллюстрирующее общее.]

Фактор состоит из римановых поверхностей - но конечного или бесконечного числа?
Каждая из них называется компонентой фактора.

Пусть клейнова группа имеет m образующих. Размерность пространства всех таких
клейновых групп – 3m− 3, если рассматривать их с точностью до эквивалентности.

Предположим, что одна из компонент фактора есть риманова поверхность типа (g, n)
такого, что 3g − 3 + n > 3m− 3.

Умеем квазиконформно деформировать фуксову группу, отображая одну из компо-
нент ее фактора на риманову поверхность с другой комплексной структурой. Проде-
формируем так же нашу клейнову группу. Возьмем компоненту фактора, существо-
вание которой предположили выше, и отобразим ее диффеоморфно квазиконформно
на риманову поверхность типа (g, n), но с другой комплексной структурой. Возьмем
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соответствующий дифференциал Бельтрами. Возьмем полный прообраз этой компо-
ненты фактора при проектировании. Поднимем дифференциал Бельтрами на весь
этот прообраз, а на дополнении положим его равным нулю. Решим соответствующее
уравнение Бельтрами, получим отображение h (как в теории квазифуксовых групп),
которое гомеоморфно отображает сферу Римана на себя.

Знаем, что если сопрячь G отображением h, то получится другая группа дробно-
линейных преобразований. Значит, получится квазиконформная деформация нашей
клейновой группы. Фактором этой деформации будет тот же фактор, что был у
изначальной группы - за исключением одной компоненты. Эта одна компонента будет
"заказанной"римановой поверхностью типа (g, n).

Получим множество клейновых групп, когда будем менять "заказанную"риманову
поверхность, в некотором смысле параметризованное модулями из пространства мо-
дулей римановых поверхностей типа (g, n). Размерность этого пространства модулей
больше, чем 3m − 3. Значит, получим слишком много неэквивалентных клейновых
групп с m образующими.

Противоречие!

[Это идея доказательства того, что тип компонент фактора не может быть
слишком большим. Та же идея работает на доказательство конечности числа ком-
понент.]

Важное замечание: сферы с тремя выколотыми точками (римановы поверхности ти-
па (0, 3)) все конформно эквивалентны, пространства для квазиконформных дефор-
маций нет. Наличие конечного числа таких компонент в факторе конечно порожден-
ной клейновой группы доказывается отдельно, и мы не будем на этом останавливать-
ся.

7.3 B-группы

Определение 10 (B-группа). B-группа – это клейнова группа, имеющая инвари-
антную компоненту Ω0 ⊂ Ω, которая является топологическим диском.

Фуксовы и квазифуксовы группы являются B-группами.
Теорема 20 (Берс). Существует B-группа G с инвариантной компонентой ∆0,
фактор которой S0 = ∆0�G.

[Историческое замечание: термин B-группа был введен последователями Берса в
честь него, так что в оригинальной версии теоремы термин не встречается.]

7.4 ППП - присоединенные параболические преобразования

У B-группы G есть фуксов эквивалент Γ.

Рассмотрим конформное отображение w : Ω0 → H. Тогда Γ := w ◦G ◦ w−1.

Определим w∗ : G→ Γ.
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Определение 11. g ∈ G – присоединенное параболическое преобразование (ППП),
если g - параболическое, а w∗g - гиперболическое.

7.5 Описание фактора B-группы

Теорема 21. Образ оси ППП при естественном проектировании π : Ω0 → S0 есть
простая (то есть гомеоморфная окружности) замкнутая кривая α ∈ S0.

Базисом в множестве всех ППП назовем минимальное конечное множество ППП. с
элементами которого сопряжены все остальные ППП. Введем следующие обозначе-
ния:

• τ1, . . . , τm - базис ППП;

• γ1, . . . , γm - их оси;
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• α1, . . . , αm - их проекции.
Теорема 22. α1, . . . , αm – попарно непересекающиеся простые замкнутые кривые,
попарно свободные негомотопные вместе с обратными.

Хотим кроме фактора S0 получить остальные факторы группы G. Мы разрезаем
S0 по αn. Затем в каждое место разреза вставляем проколотый диск. Получаются
двумерные поверхности - пока без комплексной структуры.

Это поверхности, которые описывают топологический тип компонент фактора! Осталь-
ные компоненты фактора ("если повезет") - это римановы поверхности, гомеоморф-
ные описанным выше двумерным поверхностям.

Как выглядят факторы группы G? Надо раздать им комплексные структуры!

Если никому не "выдать"комплексную структуру, получаем фактор S0 из теоремы
Берса. Выбором же выдаваемых комплексных структур и выбором частей, которым
ее даем, можно реализовать любой вариант фактора.

7.6 Униформизация B-группами

“Семейство алгебраических кривых униформизовано семейством B-групп”

Пусть Gb – B-группа, аналитическая по b ∈ B, где B – диск-база.

Семейство алгебраических кривых ϕb униформизовано группами Gb, если инвари-
антная компонента Gb ∼ Ω0b, и Ω0b�Gb

= ϕb.
Теорема 23. Семейство линий уровня ультраморсовского многочлена с одним кри-
тическим слоем униформизуется B-группами.
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Если есть два критических слоя и соответствующие исчезающие циклы не пересе-
каются, то можно униформизовать B-группами семейство с двумя критическими
слоями, двумя критическими значениями. Если эти циклы пересекаются, то нельзя.

Лекция 8. Структурно неустойчивые семейства и их
инварианты

8.1 Слезы сердца

Ситуации, показанная на картинке ниже, не может встретиться в типичном двупа-
раметрическом семействе: сепаратриса седла I, лежащего внутри петли сепаратрисы
седла L, сматывается с этой петли, а сепаратриса седла E, лежащего вне “восьмер-
ки”, наматывается на “восьмерку”. Это невозможно, если характеристическое число
седла L отлично от единицы.
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Требование λ2µ > 1 необходимо для наматывания на полицикл сепаратрисы внеш-
него седла E, как показано на следующей картинке.

Рассмотрим следующую ситуацию:
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Пусть εn – последовательность параметров, отвечающая появлению связки E и L, а
δm – последовательность параметров, отвечающая появлению связки I и L.
Теорема 24. Если два типичных трехпараметрических семейства, возмущающих

векторное поле с полициклом “слезы сердца”, топологически эквивалентны, то
lnλ

lnµ
=

ln λ̃

ln µ̃
.

Определение 12 (Топологическая эквивалентность). Даны два семейства вектор-
ных полей на сфере, V = {vε} и W = {wλ}, зависящих от параметров ε и λ. Пусть
h : B → B̃ – гомеоморфизм баз параметров, и для любого ε существует гомеомор-
физм фазовых пространств Hε : S2 → S2, сопрягающий фазовые портреты vε и
wh(ε) с сохранением временной ориентации. Тогда говорят, что V и W слабо топо-
логически эквивалентны.

Идея доказательства теоремы. Гомеоморфизм h переводит прямую с высеченными
на ней значениями параметров εn и δm, которые сходятся к нулю, в прямую, на кото-
рой также отмечены две числовые последовательности ε′n и δ′m, сходящиеся к нулю.
Разумеется, последовательности одного семейства должны наложиться на последо-
вательности другого семейства. Этого несложно добиться для одной пары, скажем,
для εn и ε′n, однако чтобы и δm перешла под действием h в δ′m, необходимо потребо-
вать, чтобы значения δm “мелькали” относительно значений εn столь же часто, сколь
и значения δ′m относительно значений ε′n.

Выражение
lnλ2µ

| lnλ|
задает “относительную плотность” точек двух последовательно-

стей, значит, должно быть инвариантом. Однако если такое выражение сохраняется,

то сохраняется и
lnλ

lnµ
.

8.2 Функциональный инвариант

Рассмотрим модификацию “слез сердца”.
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Для неё получаем инварианты
lnµλ2ν2

| lnλ|
и

lnµλ2ν2

| lnλν|
.

Рассмотрим еще одно 1-параметрическое семейство.
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Никакой интересной бифуркации при размыкании этой сепаратрисы не происходит,
но мы получаем дополнительный параметр возмущения семейства.

Эту сепаратрису можно размыкать и в I и II семействах. Инварианты вида, указан-
ного выше, у семейств будут. Однако из-за изменения параметра, отвечающего за
размыкание "петельки могут меняться расположение седел, их характеристические
числа, а значит и значения инвариантов.

Для каждого векорного поля с наличием модифицированного полицикла значения
двух дробей-инвариантов являются инвариантами топологической классификации.

Имеем 1-параметрическое семейство такое, что каждому векторному полю соответ-
ствует два числа. База такого семейства – окрестность нуля в шестимерном простран-
стве (так как связок шесть). ε0 характеризуется последней координатой: (0; 0; 0; 0; 0; ·).
Отображаемся на плоскость (два значения инвариантов).

Гомеоморфизм баз в случае топологической эквивалентности должен уважать это
отображение из одномерного пространства в двумерное, то есть фактически они
должны совпадать для двух семейств.

Получаем функциональный инвариант!

8.3 Вариации на тему: очки

Рассмотрим полицикл “очки” .
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Теорема 25.
lnλ

lnµ
– топологический инвариант полицикла “очки”.

Для этого 1-параметрического семейства также возникают последовательности мель-
кающих связок.

8.4 Мелькающие очки
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Возникает счетное число топологических инвариантов!

8.5 Хрупкость функциональных инвариантов

Добавление дополнительного параметра легко “убивает” функциональный инвари-
ант. Сродни тому, что у (R, 0) → R2 функциональный инвариант есть, а вот у
(R2, 0)→ R2 нет.

В целом функциональный инвариант обычно появляется при числе параметров мень-
ше числа числовых инвариантов.

8.6 Зубы

Рассмотрим ансамбль полициклов “губы” , замечательный тем, что из него может
родиться сколь угодно много предельных циклов.
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Ячейка Черри (“зуб”):

Оказывается, что в “губы” можно встроить сколь угодно много “зубов”, и тем самым
получить сколь угодно много числовых инвариантов (по количеству “зубов”).
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И тут снова встречаем “очки”!

Лекция 9. Числовые и функциональные инварианты
в полулокальных бифуркациях

9.1 “Динозавр”

Общий вопрос, с которого все началось: если зажать полицикл в окрестность, не
будет ли “тесно” инвариантам?
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Хотим получить эту картинку возмущением, чтобы E и I соскользнули со связок.
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Законно ли это? Оказывается, что да.
Теорема 26 (Андрей Дуков, 2025). При малом возмущении полицикла на n вер-
шинах в типичном k-параметрическом (k > n) семействе на S2 можно получить
любой дочерний полицикл.

9.2 Рождение связок и наматывание сепаратрис

Почему седло E идет наружу, а I - внутрь?

Если бы новорожденная связка шла иначе, например, как на картинке справа, то ее
бы уносило вдаль, и она бы не замкнулась.

Почему три сепаратрисы Е куда-то уйдут из окрестности, а одна намота-
ется на полицикл?

Будем смотреть за отображениями соответствия: xλ2µ дает сильное сжатие, а на про-
межутке от Γ− до Γ+ произойдет дополнительное сжатие за счет ε > 1.
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9.3 Анализ возмущений

Рассматриваем 5-параметрическое семейство. Нужное вырождение имеет коразмер-
ность 3.

Пусть есть два эквивалентных семейства с "динозавром". Тогда есть гомеоморфизм
баз.

Он переводит выделенную область в выделенную, так как это поля со "слезами серд-
ца".

9.4 Инварианты

Пусть есть два D-семейства, эквивалентные в смысле отображения баз параметров.

Тогда
lnλ

lnµ
=

ln λ̃

ln µ̃
.

9.5 Функциональный инвариант

Основано на идее Юрия Кудряшова для порождения функционального инварианта.

Произведем модификацию:
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