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1. Introduction
1.1.  Attractors and turbulence

After the fundamental work of L. D. Landau [24] and E. Hopf [16], the
heuristic explanation of turbulence from the point of view of ordinary differen-
tial equations has become widespread. The Navier—Stokes equations are consid-
ered under such an approach as a dynamical system in infinite-dimensional
phase space. The points of that space are fields of velocities of the fluid—diver-
gence-free vector fields, defined in the region of flow. The Navier—Stokes
equation itself yields a vector field, now in the infinite-dimensional phase space.
The trajectories of that field are then solutions of the Navier—Stokes equation.
A singular point of that vector field is a stationary solution of the Navier—
Stokes equation, corresponding to a laminar flow; a limit cycle corresponds to
a periodic flow. , '

The most important characteristic of a vector field is its attractor—a set to
which, with the passage of time, all or almost all of the phase curves are drawn.

The description of turbulence proposed by Landau and Hopf consists in the
following. We fix the region of flow and consider the Navier—Stokes equation,
depending on the Reynolds number as on a parameter. The first” heuristic
assumption: For every value of the Reynolds number the Navier—Stokes
equation has a compact attractor. Both Landau and Hopf supposed that it was
of finite dimension. For small Reynolds numbers, i.e. for large viscosities, the
Navier—Stokes equation has a unique stable singular point, which attracts all
the other solutions. In other words, there exists a laminar regime into which
after a positive time all remaining flows are drawn. With the increase of the
Reynolds number the stationary solution loses stability, and from it a limit cycle
is born, which takes onto itself the function of an attractor. Now, indeed, all the
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solutions are drawn to it. With the -further growth of the Reynolds number the
attractor changes its structure, its dimension increases; the motion of the phase
curves .on and around it becomes ever more complicated. The second heuristic
assumption consists in that near the attractor the solution behaves chaotically to
a larger or lesser degree.

Landau and Hopf supposed that the attractor of the Navier—Stokes equation
is for an arbitrarily large Reynolds number a multidimensional torus, and the
phase curves of the Navier—Stokes equation are conditionally periodic windings
on the torus. With the growth of the Reynolds number, as a result of the
successive bifurcations the dimension of the attractor increases. The behavior of
the phase curves on the attractor becomes more and more complicated as the
number of independent frequencies defining the conditionally periodic motion
increases.

In the following years a number of objections, of both experimental and
theoretical character, were raised against this hypothesis, by F. A. Zhuravel’
and others [35], V. S. L'vov, A. A. Predtechenskii [26], and R. Helleman [14],
who stated, “One of the principal objections against this picture consists in that
in reality chaos in experimental observations of flows does not rise constantly
with the growth of the Reynolds number R, but rather occurs sharply and
suddenly for definite values of the Reynolds number” (R. Helleman [14]).

A hypothesis that appeared at the beginning of the 1960’s after D. V.
Anosov’s discovery and investigation of U-systems, later called “Anosov sys-
tems” (see, e.g., V. 1. Arnol’d [2], [4]), is free of these objections. U-systems are
smooth dynamical systems which are characterized by the following remarkable
property. Each solution ¢ of such a system has a neighborhood resembling a
multidimensional saddle; there exist two smooth families of solutions whose
intersection contains only the solution ¢; the solutions of one of the families
tend exponentially to ¢ as ¢ — + oo; the solutions of the other family tend to ¢
as ¢ - —oo. The solutions of Anosov systems are extremely unstable; each pair
of close initial conditions may be slightly altered in such a way that the solutions
under the new initial conditions will be exponentially scattered. Anosov systems
exist even on. three-dimensional manifolds. Their solutions behave very chaoti-
cally (D. V. Anosov [1], Ya. G. Sinai [32]). The classical example is the geodesic
flow on a surface of negative curvature. .

V. 1. Arnol’d conjectured that the attractor of a Navier—Stokes equation is a
finite-dimensional smooth manifold, and that the restriction of the equation to
the attractor is an Anosov system.

This conjecture makes clear, in particular, why the solution of the Navier—
Stokes equation “forgets™ its initial condition. Indeed, after a finite time each
solution enters a small neighborhood of the attractor; two solutions, beginning
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at points that are close, may diverge by far; two solutions, far from one another,
may become close, and then again diverge, and so forth. Attractors, near which
the solutions behave so chaotically that their behavior may be adequately
described in theoretical-probabilistic terms, are called stochastic attractors (Ya.
G. Sinai [32a)).

In general, attractors need not be manifolds. Such attractors are frequently
called “strange”, although D. Ruelle and R. Takens [31], the authors of the
term “‘strange attractor”, give this name to any attractor that is not a finite
union of points or cycles. Ruelle and Takens conjectured that turbulence is
explained by the presence of an attractor, along which the solutions coming
nearby drift chaotically. The Navier—Stokes equation on the attractor itself
need not be an Anosov system.

F. A. Zhuravel’, V. S. L’vov and others, analyzing experimental material for
Couette flows, came to the conclusion that for comparatively small Reynolds
numbers (R < 1100) the Landau—Hopf hypothesis correctly describes the be-
havior of the solutions; if R > 1300 the experimental data support the hypo-
thesis of the “stochastic attractor”.

1.2.  Mathematical foundations of the heuristic picture

The first step in the explanation of the preceding hypotheses must be a theorem
on the existence of solutions of the Navier—Stokes equation on the entire
positive semiaxis of time and a uniqueness theorem. Such theorems have been
proved only for two-dimensional flows. Below we will be dealing only with
two-dimensional flows in a bounded region (with the condition of adherence on
the boundary) or on closed (two-dimensional) surfaces.

The existence of a compact attractor for the Navier—Stokes equation in a
bounded plane region was first proved by O. A. Ladyzhenskaya [21], [22]. C.
Foias and R. Temam [12] proved that a subset in phase space, invariant with
respect to the Navier—Stokes equation and bounded in a relatively strong norm
(in fact the norm H,), has finite dimension. The fact that the attractors discovered
by O. A. Ladyzhenskaya are bounded in the norm H, has been proved only for
Navier—Stokes equations on the two-dimensional torus (see §4 below).

The description of the behavior of the solutions of the Navier—Stokes equation
for small Reynolds numbers given above has a rigorous foundation. The globally
attracting singular point corresponding to the laminar flow was found by Serrin.
The loss of stability of the laminar flow and the birth of a periodic regime were
investigated by V. I. Yudovich. A detailed bibliography, along with a presenta-
tion of the results of Serrin and Yudovich, may be found in the book of Marsden
and MacCracken [28].
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About the behavior of the solution of the Navier—Stokes equation on the
attractor, almost nothing is known. In contrast, a great deal of information
has been accumulated on the behavior of flows of a nonviscous (ideal) fluid.
These flows largely resemble the solutions of Anosov systems. In fact, the
phase curves depicting these flows are geodesics on an infinite-dimensional
manifold (on the group of diffeomorphisms of the domain of the flow, which
preserve the volume). The Riemannian curvature of this group in the majority
of two-dimensional directions is negative (V. I. Arnol’d [2]). Using that fact,
Arnol’d discovered the exponential instability of the “trade-wind stream” on
the two-dimensional torus. A. M. Lukatskii obtained an analogous result for
the two-dimensional sphere [25] and for the multidimensional torus. Moreover,
Lukatskii proved that the Ricci curvature “averaged over dimension” of the
group of volume-preserving difftomorphisms of a three-dimensional region is
also negative. (The ‘““averaged over dimension” Ricci curvature of an infinite-
dimensional manifold G is defined as the limit of the Ricci curvature of a
finite-dimensional manifold, “approximating” G, divided by the dimension n of
the approximating manifold; the limit is taken as » tends to infinity.) These
results give rise to the hope of discovering in the general case the exponential
instability and chaotic behavior of the flows of an ideal fluid. It must be
said that we are dealing here with the exponential instability of the fluid
itself, and not of its field of velocities. That is a different kind of instability;
the motions of a fluid with close fields of velocities as initial conditions may
differ by a quantity which increases exponentially with time. For a flow in a
three-dimensional region V. I. Arnol’d [4, §6] discovered a stationary flow of
an ideal fluid for which the field of velocities was exponentially unstable.
Recent investigations of Arnol'd, Ya. B. Zel'dovich, A. A. Rusmaikin and D.
D. Sokolov make it possible to generalize this example to the case of a viscous
fluid.

Arnol’d offered the following conjecture: The negativity of the curvature of
the group of volume-preserving diffeomorphisms implies the exponential insta-
bility and chaotic behavior not only for flows of an ideal fluid, but also for the
solutions of the Navier—Stokes equation.

1.3.  Formulation of the results
The basic results of the present paper concerning the Navier—Stokes equation
are the following.

Theorem 1. The dimension of the attractors of the Galerkin approximations of
the Navier —Stokes equation on the two-dimensional torus does not exceed CR*.
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Here R is the Reynolds number. The estimate is valid for C = 200" for all C and,
for C =13, for large R.

A precise formulation of this theorem will be found in subsection 2.5. Here
we note only that the dimension of the attractor is understood in the nonclassi-
cal sense. In fact, we deal with the Hausdorff dimension,?> which is defined for
an arbitrary subset of Euclidean space and which may take on not only integer
but arbitrary real values. For smooth manifolds the Hausdorff dimension
coincides with the classical dimension.

The following theorem shows the kind of consequences, formulated in classi-
cal terms; that one may obtain from estimates of a nonclassical-—the Hausdorff
or a related, the so-called entropic—dimension of the attractor.

Theorem 2. Suppose that R =2, d > (2R)'°. Then the attractor of the Galerkin
approximation to the Navier —Stokes equation on the two-dimensional torus has a
one-to-one projection onto a d-dimensional plane in general position.

Remark. The estimate given in Theorem 2 is extremely rough. It suffices to
require that the number d/2 exceed the entropic dimension of the attractor. A
possible experiment suggested by Theorem 2 is considered in subsection 1.4.

Theorems 1 and 2 are obtained as corollaries of general results on the
so-called weakly contracting systems. We shall give first a definition generalizing
the concept of a contracting mapping.

A smooth mapping of a domain Q of Euclidean space is said to be k-contracting
if it decreases the element of volume of any k-dimensional plane located in Q.

Theorem. An invariant set of a k-contracting mapping of a domain in Euclidean
space into itself has Hausdorff dimension not larger than k.

This theorem, formulated in somewhat different terms, is proved in §3 (Theorem
5).

A differential equation in a Euclidean phase space is said to be weakly
contracting if it has a globally absorbing domain and the divergence of the

'1 did not try to obtain a best possible value for C. B

2 As far as is known to me, the first application of Hausdorff dimension to the theory of differential
equations was carried out by J. Mallet-Paret [27].

3 A closely related result was proved by A. Douady and J. Osterlé [11]. The theorem above was
obtained independently.
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corresponding vector field is negative in this domain. The phase flow transfor-
mation of this system in the absorbing domain, corresponding to the positive
time, is k-contracting for some k. The value of k may be relatively easily
estimated from above in terms of the right-hand side of the system. This makes
it possible to find an upper estimate for the dimension of the attractor of weakly
contracting systems (Theorems 3 and 4 of subsection 2.6).

There are many different examples of weakly contracting systems. One of
them is a multidimensional pursuit problem arising in the theory of large
biological systems (Sections 2.7,2.8). A fundamental example of a weakly
contracting system, to which this paper is devoted, is that of the Galerkin
approximations to the Navier—Stokes equation on the two-dimensional torus.
A third example is connected with the so-called Kuramoto—Sivashinsky equa-
tion

u, + W)+t + Vil =0, v >0. (1.

This equation arises in chemical kinetics.

A numerical investigation of its solutions, periodic in x with period 2z, shows
turbulent behavior for v < 1 (see for instance Y. Kuramoto and T. Yamada
[19]). The Galerkin approximations to this equation also turn out to be weakly
contracting systems. Moreover, they turn out to be k-contracting, while k is
estimated from above by a quantity depending only on v but not on the
dimension of the Galerkin approximation. Another paper will be devoted to the
investigation of equation (1.1).*

1.4. Commentary

This section contains an interpretation of Theorems 1 and 2 from the point of
view of numerical experiments; the considerations are not rigorous. Suppose
that the analogues of the theorems mentioned are valid for the full Navier—
Stokes equation and for a three-dimensional flow. We interpret this assumption
from the point of view of the experimenter observing the real flow of a fluid.
The corresponding phase curve in infinite-dimensional space becomes so close
to the attractor after a finite time that its points become indistinguishable from
close points lying on the attractor. On the other hand, the location of points on
the attractor is completely determined by a finite number of parameters (the
coordinates of the projection of those points on a finite-dimensional plane). If
the dimension of the attractor is small (of order 2 or 3) then the experimenter

4Yu. S. II'yashenko, Global analysis of the phase portrait for the Kuramoto—Sivashinsky equation,
IMA Preprint Series # 665, July 1990.
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will observe a “repetition of the picture”. Indeed, suppose that one photographs
the fields of velocities (more precisely, two fields of directions of the flow)
arising in the same flow of a fluid at different moments of time. Suppose 5 to 7
parameters characterizing these fields (for example, the directions of the flow at
prescribed points) turn out to be close. Then both fields turn out to be close in
the entire region of the flow.

This effect ought in principle to be observed for any Reynolds number and
for any dimension of the attractor. We need only remark that with the growth
of the dimension of the attractor the probability of the appearance of “close
pictures” decreases exponentially.

1.5. Problems

It would be interesting to generalize Theorem 1 to the full Navier—Stokes
equation on the two-dimensional torus or even to any closed surface. This
generalization apparently does not present any difficulties in principle.® For this
one would need an a priori estimate for the H;-norm of the solutions, uniform
relative to the initial conditions (the only thing depending on the initial condi-
tions is the moment of time after which the estimate is valid).

For three-dimensional flows the generalization of Theorem 1 seems-at present
hopelessly difficult. In this direction C. Foias and R. Temam have obtained a
conditional theorem on the finiteness of the dimension. It asserts that a set
which is invariant relative to the Navier—Stokes equation and bounded in the
norm H, has a finite Hausdorff dimension. The problem of boundedness of the
solutions in the H,-norm is one of the main problems of the theory. If one
succeeds in proving that all the solutions of the Navier—Stokes equation with a
three-dimensional region of flow are attracted to a set which is bounded in H,,
this would immediately solve the problem of existence and uniqueness of the
solution on the ray ¢ =>=0. However, an approach to the solution of this
“problem of global regularity” is at the present time not visible. See for example
J. Marsden, M. McCracken and G. F. Oster [28, end of Chapter 9].

The study of weakly contracting systems was undertaken jointly with my
friend Aleksandr Nikolevich Chetaev.

The impetus for the writing of this paper was the advice of V. I. Arnol’d, who
read in manuscript the work of A. N. Chetaev and the author [17], to apply the
results of that paper to the problems of hydrodynamics.

5 This generalization for the two-torus was recently obtained by O. A. .\Ladyzhenskaya [23], the author
[37] and A. V. Babin and M. 1. VIshik [7], [36] for the full equation on the two-torus and in a bounded
region in the plane. For arbitrary closed surfaces the problem remains open.
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I thank V. I. Arnol’d for that advice and for many fruitful discussions.
I also thank V. I. Bakhtin, A. I. Komech, E. M. Landis, A. E. Tumanov,
A. L. Shnire’man and M. A. Shubin, with whom I had very useful
conversations.

2. Definitions and basic results
2.1. Maximal attractors

The word “attractor’” means “attracting set”. This term may be given a precise
meaning in different ways.

Definition (absorbing domain). A region with piecewise smooth boundary,
situated in the phase space of the differential equation

x =v(x), (2.1)

is said to be absorbing for that equation if the field v on the boundary of the
region is directed to the interior of the region or tangent to the boundary.®

Remark. Suppose that g* is the transformation of the phase current of equa-
tion (2.1) across time ¢, B an absorbing domain for equation (2.1). Then for any
positive #, g’B = B. Once it falls inside the absorbing domain, the phase curve
never leaves it.

Definition (attractor). Suppose that B is a compact absorbing domain for
equation (2.1). The set

M=) g'B, (2.2)

teN

N being the set of natural numbers, is called a maximal attractor of equation
(2.1).

In what follows we consider only maximal attractors, and drop the adjective
“maximal”.

Remark 1. The set M is nonempty. Indeed, in view of the preceding remark,
for any integer ¢,

g'BcB.

6 The right-hand sides of the differential equations considered below are always supposed to be
infinitely smooth.
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Applying to both sets the transformation g* for a natural number s, and using
the group property of phase flows, we get

gt+sB o gsB

Accordingly, M, as the intersection of a countable number of nested compact
sets, is nonempty.

Remark 2. The set M is invariant for the time 1 transformation of the phase
flow:

g'M =M. (2.3)

Indeed, applying to both parts of equation (2.2) the transformation g!, we get
on the right-hand side the intersection of sets from the same sequence, only
without the first term. Since the sequence consists of nested sets, this does not
change the intersection.

2.2. The Navier—Stokes equation, elimination of
the effects of dimension. The Reynolds number

The Navier—Stokes equation is considered as an ordinary differential equation
in an infinite-dimensional phase space; hence we write u instead of u,. Below, u, f
are vector fields, p is a function on the torus; u, p and f are written as doubly
periodic vector-functions and as functions on the plane. In the Navier—Stokes
equation

u=—w,Vu+vAu —Vp +f, divu =0,

the vector-function f does not depend on time and has a zero average on the
torus.

In order to eliminate the effects of scaling from the problem, we need to
choose the system of units in such a way that the ‘“characteristic size” of the
domain of the flow and the “characteristic norm”™ of the perturbing force f are
equal to unity. The choice of both quantities contains elements of arbitrariness.
The characteristic dimension turns out to be the modulus of the maximal
nonzero eigenvalue of the Laplace operator on the torus; the torus is chosen so
that that quantity is equal to unity. Without loss of generality we may suppose
that div /= 0. The characteristic norm turns out to be the norm |rot f|,,. We
shall further on write |rot f|| for short.

Remark. On the space of divergence-free vector fields with zero average on the
torus, [rot | is indeed a norm.
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Below we will denote by #(-) the mean value of a function or vector-function
on the torus. Beginning from this point we suppose that the “de-dimensionaliza-
tion” has already been accomplished;

T2 = R*/2nZ?, [rotf] =1, m(f) =

We denote by L, the space of functions with summable square on the torus,
equipped with the usual scalar product and norm:

27 2n
(p.9) =J pq=£ L pgdxdy, |p|*=(pp).
T2

We denote by L, the space of vector-functions on the torus L, = L3. The scalar
product and the norm in L, are defined as follows: If u = (uy, ), v = (01, vy),
then

(u’ U) —_—(1,{1,1)1) +(u2,vz); "u"z:(ua u)'

The scalar product and norm in the spaces L, and L, are denoted in the same
way. With which space we are dealing will be clear from the context.

We denote by ¥ the space of divergence-free, in the generalized sense, vector
fields in L,:

V={ueL,|(,Vp)=0Vp e C(T?}.

We denote by 4 the space of twice smooth vector fields on V. The subspace V
is closed in L, (O. A. Ladyzhenskaya [21]).

Suppose that P is the orthoprojector L, — V. The kernel of the operator P
consists of. gradient vector fields whose potentials have generalized first deriva-
tives in the sense of Sobolev. It is not hard to prove that PA = AP. Therefore
the Navier—Stokes equation may be written in the form

= —P((u, VYu) +vAu +f, ueH. (N-S)

The torus 7 and the perturbation f satisfy the normalizing conditions (2. 4) the
Reynolds number is defined by the equality R = 1/v.

2.3.  Galerkin approximations

Denote by A, the restriction of the Laplace operator on #. Suppose that
M < p, < - - - are the eigenvalues of the operator —A,,, enumerated by taking
account of multiplicity; in particular, p, = p, =0, u3 =+ - - = yg = 1. The eigen-
vectors of the operator A, have the form (* = Ik e**, k € 7%, where I is the
counterclockwise rotation of the plane R? through 90°: if k = (k,, k,), then

= (—k,, k,). The eigenvalue |k|* =k} + k3 corresponds to the vector {*. We
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enumerate the vectors {{*|k € 72} in the sequence {5/|je N} so that the
eigenvalue p, corresponds to the vector #/ and so that the vectors {* and { %
stand side by side. For any even N we denote by E, the space of all real vector
fields generated by the fields n', . . ., #”. Denote by Py: L, — E, the orthopro-
jector. Put

Bu) = —(w, Vu +vAu + f.
Then the Navier—Stokes equation takes the form
u = PB(u), ueH (N-S)

(the linear operator and its derivative are denoted in the same way). The
Galerkin approximation to the Navier—Stokes equation has the form

u = Py B(u), ueH. (Gy)

2.4. Hausdorff and entropic dimension

The idea of the definition of Hausdorff dimension is illustrated by the following
example.

One is investigating a set in R*® about which it is known that it is either a
curve, a surface, or a body. The set itself is inaccessible, but, to the question:
“What is its length, area, and volume?” one can obtain an answer. Obviously,
the answer: length oo, area 1, volume 0 means that the unknown set is a surface.

To define the Hausdorff dimension, we first define the Hausdorff measure,
which in turn is defined in terms of coverings, similar to the upper Lebesgue
measure.

Everywhere below K is a compact subset of a Hilbert space. All the definitions
retain their meaning for subsets of any metric space, but we will have no need
of such generality.

Definition. A covering of the set K by balls (for short, a covering of the set X)
is a collection of balls whose union contains K.

We denote by U, (K) the collection of all finite coverings of K by balls whose
radii do not exceed . B,(K) denotes the set of all coverings of the class U, (K)
consisting of equal balls; the d-dimensional volume of a covering U of the set K
by balls Q; of radius R, is the quantity :

Va(U) =Y. R}
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Put
m,(K)= inf V,(U).

2 e Uy (K)
Definition. The d-dimensional Hausdorff measure of the set K is the limit, finite
or infinite,

m4(K) = lim m, 4(K).
-0

This limit exists, because for a fixed d the quantity m, ,(K) does not decrease
with the decrease of ¢, the infimum in the definition being taken over an ever
smaller class of coverings.

Definition. The Hausdorff dimension of the set K is given by the formula

if my(K) #0  for any d,

. 0,
i K = {inf{d | m(K) =0} otherwise.

The entropic measure and dimension are defined in the same way as the
Hausdorff ones, with the only difference that everywhere, instead of coverings of
the class U, (K), one chooses coverings of the class B,(K). The entropic
d-dimensional measure and dimension are denoted by Em,(K) and dim;(K),
respectively. The concept -of entropic dimension was introduced by L. S.
Pontryagin and L. G. Shnirel'man [29], who called this quantity the “metric
order of the compact set”.
The properties of both dimensions are discussed in subsection 5.1.

2.5. Attractors of Galerkin approximations

Now we may precisely formulate Theorem 1 of the Introduction. Our results are
divided into qualitative—we assert the existence of some estimates, and quanti-
tative—we calculate estimates explicitly. Here we shall formulate these and
other results, and prove only the qualitative ones.

Theorem 1. 1°. The system (Gy) has an attractor whose entropic and Hausdorff
dimensions are estimated from above by constants, depending only on the Reynolds
number, and not depending on the index N of the Galerkin approximation.

2°. If R <0.69, then the system (Gy) has a stationary solution to which all the
others tend as t — co. The attractor consists of a single point.

3°. For large R

dimy, M <13R*,  dim, M < 2'R'.
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Moreover,
dim, M <200R* for all R;

dim, M <2°R® for R>2.

2.6. Weakly contracting systems
Theorem 1 is obtained as a consequence of general theorems on the so-called
weakly contracting systems.

Definition 1. An absorbing domain of the dynamical system (2.1) is called
globally absorbing if each phase curve falls into that domain'after some positive
time.

Definition 2. The dissipative system (2.1) is called weakly contracting if
1°. It has a globally absorbing domain B with a compact closure.
2°. In the domain B the inequality

divy <0

is satisfied.

Obviously a weakly contracting system has an attractor M < B. One may
succeed in estimating its Hausdorff and entropic dimensions if one imposes
additional requirements on the system. .

Beginning from this point, the space R is Euclidean. To each smooth vector
field v there corresponds a quadratic form

Fv(x): € —’(U*(x)é, é): é € Tx RN'
Suppose that 1,(x) = -+ = Ay(x) are the eigenvalues of the quadratic form
F,(x).
Definition 3. A weakly contracting system with a globally absorbing domain B
has characteristic k if for each x € B,
T() + -+ A(x) <0,
and for some x € B,

() + -+ A1 () 2 0.

Definition 4. A system with a globally absorbing domain B is said to be weakly
contracting with constants (4, a, n), where A is real, a is positive, and # is a
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natural number, if it is weakly contracting in the sense of Definition 2, and for
any x € B,

M) <4 A (X) < —a

Theorem 3. A compact invariant set of a weakly contracting system with
characteristic k has a Hausdorff dimension no larger than k.

Theorem 4. A compact invariant set of a weakly contracting system with
constants (A,a,n) has an entropic dimension not exceeding the quantity
16n(4 + a)(A + 5a)a—2.

If, moreover, A <0, then any compact invariant set of the system in question
consists of a single point.

Theorem 4 is proved in the paper [17] of A. N. Chetaev and the author.

The following section is devoted to the proof of Theorem 3. A comparison of
Theorems 3 and 4, and also of the estimates of Assertion 3° of Theorem 1,
shows that the Hausdorff dimension is more easily and better estimated by
analytical means than by entropic means. However, in numerical calculation
one almost always “estimates” (on the empirical, nonrigorous level) the en-
tropic, and not the Hausdorff, dimension. Moreover, the dimension of a plane
in general position, on which one may homeomorphically project the compact
set, has been successfully estimated only in terms of the entropic, and not the
Hausdorff, dimension. Therefore we consider here both dimensions.

2.7.  The multidimensional pursuit problem

A large number of visual examples of weakly contracting systems give rise to the
so-called multidimensional pursuit problem, which in my point of view is of
independent interest. It was posed by A. N. Chetaev and arises naturally in the
investigation of large biological systems (A. N. Chetaev [10], A. A. Chestnova
and A. N. Chetaev [9]). The following model in very rough terms describes the
work of that zone of the respiratory center where the rhythmics are generated.
It is a significant simplification of the model of Chestnova and Chetaev [9].
Suppose that {1, ..., N} is a set of cells of the zone being investigated, x, a real
parameter describing the state of the cell (the mean instantaneous frequency of
impulsation of that cell). An exterior signal arriving at the cell i is decoded as a
requirement to “go to the state y,”. The state of the cell changes according to
the law

56,» =y,' - X;.
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This equation corresponds to an idealization of a “system with broken connec-
tions”. In fact the signal y, arrives at the i-th cell not from without, but rather
is determined by the states of the remaining cells of the system, including the cell
i itself:

yizf;‘(x)’ X=(X1,...,JCN).

Therefore the work of the system of cells {1, ..., N} is defined by a differential
equation:

x =f(x) —x, f=(fl""’fN);

here f is an interior signal defining the state of the system. The image of the
mapping f is called the “manifold of interior signals” and is denoted by A. The
complexity of this manifold (in particular, its dimension) characterizes the
complexity of the behavior of the system of cells. Thus, if A consists of a single
point y, the system, from any state, goes into the stable state y. In the general
case one has to study the set of “stationary regimes of the work of the system
of cells”, depending on the properties of the mapping f.

The formal statement of the problem consists of the following.

Suppose f: RV — A is a smooth mapping of R" onto a compact manifold A,
with or without boundary. The system

x=f(x) —x (2.5)

is said to be a multidimensional pursuit problem. We seek to find an attractor of
this system.

Proposition 1. Suppose that B is any ball containing A, dim A =n, and L is the
Lipschitz constant of the restriction of f to B. Then
1°.  The multidimensional pursuit problem (2.5) is a weakly contracting system
with constants (L — 1, 1, n) and absorbing domain B;
2°.  The characteristic k of the system (2.5) does not exceed the integer part of
Ln+ 1:k <[Ln+1].

Proof. The second assertion follows immediately from the first, which is
proved below. The vector in the right-hand side of the system (2.5), depicted as
a directed segment, has origin x and endpoint f(x) € A. Therefore any ball
containing A is a global absorbing domain for the system (2.5): any positive
semitrajectory of the system (2.5) sooner or later falls into any such ball.

We will prove that the system (2.5) is weakly contracting with constants
(L—1,1,n). Fix a ball B containing A and suppose that v(x) =f(x) —
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x F,(x): € 5 (0 (x)&, &). Then for x € B,
F,(x)¢ <(L—-1D(E 9O,

in view of the Schwarz (Cauchy—Bunyakovskii) inequality.
This proves the inequality 4,(x) < L — 1 (see Definition 4 in subsection 2.6).
Further, the rank of any mapping f,(x) at each point x € B does not exceed
n. Therefore the subspace Ker f,(x), as the kernel-of an arbitrary mapping,
cannot have codimension larger than n. On the other hand, for ¢ € Ker £, (x),

@& ) == D).

Accordingly, by the theorem of Rayleigh, Courant and Fischer (V. I. Arnol’'d
[4) no more than n eigenvalues of the quadratic form F,(x) exceed
—1: 4,,, =< —1 for each x € B. Proposition 1 is proved.

Corollary. The Hausdorff dimension of an attractor of a multidimensional pur-
suit problem does not exceed [Ln + 1].

This assertion strengthens a result of A. N. Chetaev and the author [17].

2.8. A geometrical example

Some questions naturally arise: Can a weakly contracting system with constants
(4, a, n) have an attractor with dimension larger than »n?

Can the multidimensional pursuit problem have such a property?

Two students of V. I. Arnol’d, namely D. N. Bernshtein and V. A. Vasil'ev,
have constructed examples giving a positive answer to both questions. Vasil’'ev
constructed a closed curve on the plane and a field of tangent pointer-vectors on
it, the endpoints of which run along a nonclosed curve (Figure 1).

Proposition 2 (V. A. Vasil'ev, D. N. Bernshtein). For any n there exists a
multidimensional pursuit problem for which the manifold A has dimension n and
the attractor has dimension 2n.

Proof. 1°. We first construct a system (2.5) with a one-dimensional “objective
manifold” A and a two-dimensional attractor. The crucial step is already done
on Figure 1. Suppose I' is a closed curve as depicted in the figure, and A a
nonclosed curve running through the endpoints of the tangent vectors to I'. The
mapping fr-: ' = A is given on Figure 1; the origin of the vector passes into its
endpoint. We extend fr to a smooth mapping f: R*—A. To this end we
smoothly parametrize the curve A by points s of the segment 7 = {s € [0, 11}.
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Figure 1. A is the objective manifold, I' the closed phase curve of the corresponding multidimensional
pursuit problem.

The mapping f; defines a function s o fr.: I'— I (and may be reconstructed in
terms of it, because the mapping s: A — I is invertible). We extend the function
s o fr to a smooth function S: R— A (this may easily be done by an elementary
construction). We define the mapping f: R>— A by the formula f'=s~"'o § (the
point s is mapped to the point on the curve A which corresponds to the value
of the parameter s = S(x)).

The mapping just constructed coincides on I' with fi- and yields a multidimen-
sional pursuit problem (2.5) having a closed phase curve I'. The interior of this
curve is, obviously, invariant under the action of the phase flow, and, accord-
ingly, lies entirely in the attractor of the system (2.5), which is thus two-dimen-
sional.

2°. The direct product of n systems, constructed in 1° above, yields the
desired multidimensional pursuit problem. Proposition 2 is proved.

Addition of the direct component y = —y, y € R”, for sufficiently large m,
transforms the equation constructed in Proposition 2 into a weakly contracting
system.
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3. Attractors of weakly contracting systems

3.1. Distortion of volumes under the action of
weakly contracting systems

In this subsection we prove Theorem 3. The proof of Theorem 3 is based on the
following simple idea, due to A. N. Chetaev. A dynamical system for which the
transformation of the phase flow for a positive time decreases the k-dimensional
volume cannot have an invariant k-dimensional manifold.
' Indeed, an invariant manifold under the action of a phase flow preserves its
volume.

A. N. Chetaev applied this idea to the study of the attractor in the multi-
dimensional pursuit problem.

V. L. Arnol’d proposed to call the transformations decreasing the k-dimen-
sional volume “‘k-contracting™.

Lemma 1. Suppose that x = v(x), x € R", is a weakly contracting system with an
absorbing domain B and characteristic k. Then the phase-flow transformation of
this system for any positive time is k-contracting in the domain B.

Proof. As above, we denote by 4;(x) the j-th eigenvalue of the quadratic form
Fv(‘x): é —"(D*(x)é> é), j’l(x) 22 /{N(x)a
and we suppose that
A, =max ) A(x).
xeB 7

We will prove that for any x € B and any n-dimensional parallelepiped
IT" < T, B the inequality

| V(gL (x)IT") < et tP(TT7) (3.1)

holds, where V(I1") is the nonoriented n-dimensional volume of the paral-
lelepiped IT". The assertion of the lemma follows immediately from inequality
(3.1). We will prove, first for small 7, the inequality

V(g5 (0)I") < (1 + A, 7 + o(x)) V(IT7). (3.2)

Suppose that IT is the n-dimensional plane containing IT”, Fy, is the restriction
of the form F,(x) on II, v, > - - - 2 v, the eigenvalues of the form F, 5, ..., 5"
the corresponding orthonormalized eigenvectors. Suppose that I” = IT is a unit
cube with edges 7, . . ., #”. The volumes of all #n-dimensional parallelepipeds in
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the plane IT under the mapping g% (x) are distorted in the same way. Hence

Vgt
O V(g% ()I").

Further,

Vgwr < [T lesconl

the volume of the parallelepiped does not exceed the product of the lengths of
its edges. On the other hand,

g°x = x + w(x) + a(z, x), a(z, x) = o(7),
uniformly over x € B. Accordingly,
gr(X)E = & + w,(x)E + o(7), gz Cml < 14 1v; + o(2).

By the Rayleigh—Courant—Fischer theorem (V. I Arnol'd [4]), v; < 4;(x).
Hence inequality (3.2) follows.
Suppose that ¢ is arbitrary and positive. Putting T = 1/v in (3.2), we get

At 1
V(gPx)Irm < <1 + ; + 0(;>>V(H”).
Taking account of the group property of the phase flow in an absorbing
domain for ¢ >0 we get

Mg, IT) < (1 p Aty o(%)) V).

Passing to the limit as v — oo, we obtain inequality (3.2). Lemma 1 is proved.

3.2. Distortion of the “Hausdorff volume’ under
a diffeomorphism and an upper estimate of the
dimension of attractors

3.2.1. Formulations. In this subsection we deduce Theorem 3 from Lemma 1.

V. 1. Arnol’d proposed to consider it as a consequence of a theorem on the
distortion of Hausdorff measure under diffeomorphism. The formulations of
Theorems 6 and 7 resulted from conversations between V. I. Arnol’d and the
author. These theorems are formulated, proved, and used for subsets of a
finite-dimensional space. Close results are valid in infinite-dimensional space.

Theorem 5. 1°. Suppose that O is a region in Euclidean space H and g: O - H
a twice smooth diffeomorphism with a second derivative bounded in O. Suppose
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that k is an integer and that, for any x € O,
V(g «(x)ITF) < gV(I1%), (33)

where I1* is a k-dimensional parallelepiped in T .H, V(II¥) is its nonoriented
k-dimensional volume, and q is some positive constant.
2°. Suppose K < O is a compactum;

g(K) =K.
3°. Suppose g < 1. Then
m(K)=0 and dim,(K) <k.

An analogous theorem is valid in the infinite-dimensional case. It strengthens
a result of J. Mallet-Paret [27] and will be published elsewhere.

Theorem 6. Suppose condition 1° of Theorem 5 is satisfied.
2°. Suppose that K < O is compact, and

0 <m(K) < 0.
Then there exists a quantity C(k) >0 such that

m(gK) < Ck)gm, (K). (34
Both of these theorems may be derived from the following one.

Theorem 7. Suppose condition 1° of Theorem 5 is satisfied, and that K < O is
compact. Then there exists a constant C(k) >0 such that for sufficiently small &
the inequality

m, (8, K) < C(k)gm; . (K) (3.5)
holds, where 6 = 2\/5 eq k.

In what follows we shall constantly use concepts from subsection 3.4, where
in particular the quantity m,, is defined.

3.2.2. Reductions. Suppose that Theorem 7 is already proved.
Proof of Theorem 6. Taking account of the fact that § = 2\/5 eq'/*, we pass to

the limit in inequality (3.5) as ¢—0. We obtain inequality (3.4) with
C(k) = C(k).
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Proof of Theorem 5. It is sufficient to establish that m, , (K) =0 for all

sufficiently small ¢. Suppose the contrary: There exists an arbitrarily small ¢ for
which

m, (K) #0.
In view of the invariance of K, g(K) = K and, for any natural number ¢,
m 1 (g°K) = m, ;. (K).
We choose ¢ so that
g'Ck) <1 (3.6)

and apply Theorem 7 to the mapping g’. This mapping is defined in some
neighborhood O’ = O of the compactum in view of the invariance of K, and it
satisfies there the inequality

V((g) «()IIF) < g'V(IT*) for x e O’.
Theorem 7 together with inequality (3.6) implies that ’
M. (&°K) < m, . (K).

The resulting contradiction completes the proof.’

3.2.3. Commentary. It would be interesting to find the smallest value for
C(k) in Theorem 6. Here we have proved a very rough variant of the theorem:
C(k) = Kk eXp(Z\/%). The covering theorem of Rogers [30] makes it possi-
ble to lower C(k) down to the value 23%*/2p(k), where p(k) =k(Ink +Inln k + 5)
is Rogers’ constant. No one has yet succeeded in lowering that value of C(k).

3.2.4. Plan for the proof of Theorem 7. We recall that W, (K) is the class of
coverings of the compact set K by balls of radius no larger than é.

Lemma 2. Suppose that g and K are the same as in Theorem 7. Then there exists
a small & such that, for each covering U e U, (K), there exists a covering
U e W;(gK) such that

Vi(0) < Ck)V(U);
here 6 =2./2 eq"* and C(k) is a positive quantity depending only on k.

Theorem 7 follows immediately from Lemma 2.

7 This proof, as well as the formulation of Theorem 5, was inspired by the heuristic considerations in
the paper of P. Frederickson, J. L. Kaplan, and J. A. Jorke [13].
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Scheme of Proof of the Lemma. Suppose that the covering U consists of balls
Q; with centers x/ and radii R;. The regions gQ, cover gK. If ¢ is sufficiently
small, each of these regions is very similar to the ellipsoid g, (x/)Q;, which we
denote from now on by &;. The ellipsoid & is flattened out, in the following
sense. Let a,,...,a; be its k largest axes, &; the section of the ellipsoid
spanning them, Q; a ball of radius |a, | in the plane orthogonal to the subspace
spanning &;. Then &; = &; x Q. It is not hard to show that |a,| < ¢g'*R;, while
the a, axis may be arbitrarily large.

The ellipsoid &7 may be covered by balls of radius |a, | in such a way that the
k-dimensional volume of the resulting covering will not be larger than C,(k)gR?
(Proposition 2 below). Blowing up these balls by ﬁ times, we obtain a
covering of the whole ellipsoid &;; blowing them up a bit further, we obtain a
covering of the region gQ;. Taking the union of these coverings over all j, we
obtain a covering of the compactum gK, the k-dimensional volume of which
does not exceed C(k)qV,(U), as required.

3.2.5. Proof of Lemma 2. All the notation of subsection 3.2.4 remains in
force.

Proposition 1. Suppose that A: H — H is a linear operator such that
V(ATT) < gV(I19);

Q is the unit ball in K. Then there exist an R < ﬁq”" and a C,(k) such that the
ellipsoid & = AQ can be covered by balls of radius R such that one obtains a
covering (denoted from now on by U,) for which

Vie(Uy) < C(k)gq.

Proof. Denote by a,, ..., a, |a;| =v;, the k largest semiaxes of the ellipsoid,
v; =2, and suppose that &’ is a section of the ellipsoid & by a plane
spanning these axes. Obviously

1/k
Vis oo s Ve < g, Ve < gk,

Denote by Q’ a ball of radius v, with center 0, situated in the orthogonal
complement of the plane of the ellipsoid &’. Obviously & =&’ x Q’.

Proposition 2. The ellipsoid &' may be covered by balls of radius v, such that
their centers lie in the plane of that ellipsoid and the k-dimensional volume of the
resulting covering U, does not exceed C,(k)g, where C,(k) is a positive quantity,
depending only on k.
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Remark. The k-dimensional volume of U, is estimated from above by a
quantity depending only on the volume but not on the form of the ellipsoid. The
radius of the balls of the covering still depends on the form of the ellipsoid, and
the region gQ; may be approximated by ellipsoids of a different form. This
prevents proving Theorems 5—7 for the entropic dimension in the same way as
for the Hausdorff dimension.

Proof of Proposition 2. We enclose the ellipsoid 8 in a parallelepiped IT with
edges 2v,,...,2v,. Any segment of length v can be covered by segments of
length 2 whose number does not exceed 1 + v/h. Therefore the parallelepiped IT
may be covered by cubes with edge # whose vertices form a cubic lattice and
whose number does not exceed the quantity

Rk, ) = (2v, + h) . .. (2ve + A%

The parallelepiped IT may be covered by balls of radius R = v, with centers at
the nodes of a cubic lattice and with step 2 = ZR/\/E; the number of balls does
not exceed N(k, #). We denote the resulting covering by U,. We have

p () < Bt h). - Qv+ ke Rks(vl+V_k>..,<vk+_vk_>kk,z

>R NG NG

1 k
< ... vk<1 +7) kK2 < [ki2 oN/kg,
k

because v, ...v, < q, h=2v, /\/E. The proposition is proved for
Cy(k) = k*2[eV*.

Proof of Proposition 1. We replace the £-dimensional balls of the covering U,
(having radius R = v,)) by concentric balls in the space H of radius ﬁR. By the
Pythagorean theorem, these balls form a covering of the product &’ x Q’, and,
consequently, of the ellipsoid &. This is the desired covering U,. Obviously

Vi(Uy) < 252G, (k).
Proposition 1 is proved for C,(k) = 242C,(k) = k*22% eV,

Proof of Lemma 2 (Completion). If M < H is some set, U a collection of balls,
a € H, b R, then we denote by a + bM and a + bU the set and the collection
of balls obtained from M and U, respectively, by the affine transformation
x —a + bx. We denote by Q the Euclidean ball with center 0 in any of the
tangent spaces 7, H.

We choose an arbitrary p € (0, 1). In view of the boundedness in O of the
second derivative of the mapping g, there exists an ¢(p) such thatif Q' <O is a
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ball with center x and radius R < &(p) then

g0 cgx +(1+p)g.(x)Q". (3.7

Suppose further that &(p) is less than the distance from K to d0. In Lemma
2 we now take ¢ < &(p). Then we may suppose that all the balls of the covering
U < U, (K) belong to the domain O. Suppose that the covering U consists of
balls Q; with centers x’ and radii R;. In view of relation (3.7),

890, = gx’ + (1 + p)R;g . (x)Q-

Suppose that 4, =g, (x)) and U, is a covering of the ellipsoid 4;Q, con-
structed in Proposition 1. Then the collection of balls

is a covering of the region gQ;. The union of such coverings over all j forms a
covering of the gK; it is the desired covering U. In view of Proposition 1,

VeUp) = (1+ p)*REVi(U,) < (1+ p)*C ()R}
Accordingly,
Vi(0) <(1+ p)*Ci(k)qV, (D),
which proves Lemma 2 for
C(K) = (1 + p)*C, (k).

Remark. Since p € (0, 1) is arbitrary, in Lemma 2 and Theorem 6 we may take
C(k) = C,(k) = k'QVk ¢k,

4. Galerkin approximations of the Navier—Stokes
equation as weakly contracting systems

In this section the first assertion of Theorem 1 is deduced from general theorems
on weakly contracting systems.
We denote by E§ the plane {u € Ey | m(u) = C}.

4.1. Main lemma

Main Lemma 1°. The plane E is invariant for the system (Gy). The restriction
of the system (Gy) to the plane E§ is a weakly contracting system for sufficiently
large N with characteristic k and constants (4, 1, n). All of these parameters are
estimated from above by a quantity depending on the Reynolds number and not
depending on N.
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Assertion 1° of Theorem 1 follows immediately from this lemma and from
Theorems 3 and 4. The remaining part of this section is devoted to the proof of
the main lemma.

Proof of Assertion 1°. 1t is easy to prove that m(B(u)) = 0 for u € #. Further,
the operators m and P, commute (the operator P, preserves the lower modes).
Hence m(B*(u)) =0 for u € E,. Accordingly, the vector-function m(u) is the
first integral of the system (Gy). Assertion 1° of the main lemma is proved.

All the further proofs are carried out for C =0; for C #0 they can be
obtained by simple modifications.

4.2. The absorbing domain

Lemma 1. 1°. The set &y ={u € E} | |rotu| < R} is an ellipsoid.
2°. For R <R this ellipsoid is absorbing for the equation (Gy).

Remark. In view of Lemma 1 the function |rot u||*> decreases along any phase
curve of the system (Gy) in the region |rot u|| < R. Therefore for the system
(Gy) on the plane EY, the ellipsoid B = &y is a globally absorbing domain.

Proof of Lemma 1. 1°. The form |rot « | on EY, is positive definite. Indeed, in
the opposite case there exists a nonzero field 4 € E for which rot 4 = 0. Since
the divergence and mean value of % are also zero, then £ is itself zero, a
contradiction.

Thus the set &y is indeed an ellipsoid.

In what follows the proofs of this and the following lemmas make use of the
general method: First we establish a certain assertion for the full Navier—Stokes
equation, and then we show that the passage to Galerkin approximations leaves
the assertion in force.

2°. We denote by d/dt and d/dt, differentiation along the vector fields B and
BV, respectively. We recall that B(u) = —(u, V)u + vAu + f, BY = P, B.

Proposition 1. d/dt|rot u|> <0 for any u € # for |rotul| = R.

The proof is based on the two following facts.
1°. |rotu|*> is the first integral of Euler's equation, so that
(rot[P(u, V)u], rot u) =
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2°. The torus 77 is a manifold without boundary, so that for any function
h e C\(T?),
(rotu, h) = —(u, IVh).

Below we apply this equation to 4 = rot u; it is not true for smooth functions
4 in a bounded region. Proposition 1 is the only place in our considerations
which is not suitable for Navier—Stokes equations in a bounded plane region
with the condition of adherence at the boundary.

We have

%% (rot u, rot u) = (rot PB(u), rot u) = (v rot Au + rot f, rot u)
= (vArot u +rot f, rot u) = —v(V rot u, V rot u) + (rot f, rot u).

Proposition 2. For any function he CY(T? with a zero average,
(Vh, VH) = (h, h).

Proposition 1 follows immediately from Proposition 2. Indeed, # =rotuis a
function with a zero average, and since ||[2| > R =1/v, [rot f|| =1, we get

—v(Vh, Vh) + (rot f, i) < v(—||h|*+ R|k]) < 0.

Proof of Proposition 2. The minimum of (VA, Vh) over h e C'(T), || =1, is
the maximal eigenvalue of the Laplace operator on 72 on functions with zero
average.

The torus T2 is chosen so that this eigenvalue is equal to —1.

The inequality (VA, Vh) = 1 for ||#|| =1 proves the proposition.

3°. Now we pass from the full Navier—Stokes equation to Galerkin approxi-
mations in order to prove Assertion 2° of Lemma 1.

Proposition 1". (d/dty)|[rotu|> <0 for any u € Ey for |rotu| > R.
Proof.

%%v [rot u|? = (rot BY(w), rot u) = — (B (w), Au)
= —(PB(u), Au) = (rot PB(u), rot u).

The third equation uses the inclusion AE, < E,. This finishes the proof of the
proposition, and hence of Lemma 1.
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It remains to estimate the eigenvalues of the quadratic form, which was used
to determine the characteristic of the system.

4.3. Estimation of the quadratic form
Lemma 2. Suppose that

Fy)é =(BiW¢E, &, L eT,EN.
Then there exists a C(R) such that for any ue€ B={u € E} | |rotu| <R} the
inequality
Fu()é < CRYE &) + 5 (6, AD

holds.

We deduce the main lemma from Lemmas 1 and 2.

In view of Lemma 1, the ellipsoid B is a globally absorbing region for the
system (Gy) on the plane EY.

Suppose, as we did above, that p, <y, <--- are the eigenvalues of the
operator —A,,.

The quadratic form

1
®: &> CRIE &) + 5 (6 A
has on the plane E% the eigenvalues

O =Wy, a)j=C(R)—lg;{2, je(l,...,N).

We note that y,—oo as j—oo. In view of Lemma 2 and the Rayleigh—
Courant—Fischer theorem, the jth eigenvalue of the form F () does not exceed
;. For sufficiently large N, YV @, < 0. By the definition of the form Fy(u), the
divergence of the field B" is equal to the trace of the form Fy. Therefore, for
sufficiently large N, div 8" < 0 everywhere in B. For such N the system (Gy) is
weakly contracting on EY. The characteristic of this system does not exceed any
k’ for which Y% w; <0. Thus the characteristic of the system (Gy) on EY, is
estimated from above by a quantity depending only on the Reynolds number.
Finally, the system (Gy) on E% is weakly contracting with constants (4, 1, n),
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while

AsC(R)—%

and the number 7 does not exceed a number n’ for which”
B
C(R) T 1.

The main lemma is proved.

4.4. Proof of Lemma 2

The following assertion makes it possible to pass from the full Navier—Stokes
equation to the Galerkin approximation. It is of a general character, and uses
only the formula BY(u) = Py B(u).

Proposition 3. 1°. For ue Ey, € € Ey,
(BI@)E, &) = (B, W)E, &)

Proof. The tangent space T, is canonically isometric to 5. Consider B as
a mapping # —L, and B, as the derivative of this mapping. For short
put X =Ey, Y=Exn#, B =BY, B" =B — BY. We denote by 0B’/dx and
0%B’/0y the derivatives at the point u of the restrictions of ¥’ to X and 7Y,
respectively: (0%B'/0x): X — X, (08’/0y): Y - X. Analogously one defines the
action of the operators (0%8"/0x): X —» Ex, (08"/dy): Y — Ex.

Then

oy oW
oy’ ox 0y
N — —
i;*(u) - ax ) Q;*(u) - a%l/ a%ll
ox Oy
Therefore, for £ € X,
oy’ oB”
B, (w)¢ _Wé +—éx—§,

(,02.0 = (G 6.¢) = (B2 &

as we were required to prove.
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2°. The explicit form of the formula (B, (W), &). We have (u, VIu =u u,
where u, is the Jacobian matrix of the vector-function u. For u, £ € #,

B¢ =5 Bluted)  =und +EutvAL,

(B (W&, Q) = w4 ¢, &) —w(VE, V),

because

(Ceu, &) = —3(u, V(& &) =0.

3°. It remains to estimate the eigenvalues of the quadratic form

F): &>yl &) +v(E AL, e,

for all u € B with |rot u| < R. This is equivalent to the estimation from below
of the eigenvalues of the Schrédinger operator with a potential from L,.
Happily, here we find ourselves in a domain which has been studied in full
detail.

Proposition 4. If |rotu <R, & € #, m(£) =0, then there exists a number C(R)
such that

(48,9 +(E A < CRIE &) +75 (£, AQ).

Three proofs of this proposition are known to me.

The first uses a lemma of Kato (Kato [18], p. 340) and gives the best estimate
for C(R). Indeed, Assertion 3° of Theorem 1 follows from this estimate.

The second makes use of an inequality of Ladyzhenskaya [20] and essentially
uses the two-dimensionality of the torus.

The third is based on the Sobolev imbedding theorem [33] and works
simultaneously for functions on the two-dimensional and three-dimensional
torus.

The proof of Proposition 4 will be carried out by the second and third
methods. Below, s is equal to 2 or 3.

For each Banach space B we will denote by B the space B° with norm
[€13="35 &3, where & =(&,, ..., &). If Bis a Hilbert space, then the scalar
product in B is defined by the formula (&, #) = Y5 (&, #;). We will denote by H,
the Sobolev space of functions on 7° with a zero mean and norm
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|72, = —(Vh, Vh),,. We note that

”é |IH1 é Aé)Lz

We turn to the estimate itself. By the Schwarz inequality,

w2 0= ([ ol ax) el

the integrand is the ordinary norm of the matrix.

On the subspace ¥ nH, (the divergence-free vector fields of H,) the norms
(J7s [|u4(x)|* dx)'? and |rotu| are equivalent. Therefore, in view of the in-
equality ||rot u|| <R there exists a constant C, such that

e, O < CGRER,

Completion of the Proof for s =2. From Ladyzhenskaya’s inequality it follows
that there exists a constant C, such that

[EIE < Gl 2] =Coi/ (& ADE, ©.
Hence it follows that for any ¢ >0,
€[5, < Cal—e(&, AE) +&7'(&, O).
Finally, for some C > 0,
(4 &, O] < CR[—e(&, AD) + &7, O)].
Choosing ¢ = (v/2)(CR) !, C(R) = CRe !, we get Proposition 4.
Completion of the Proof for s =3. In view of the Sobolev imbedding theorem,

the imbedding FI, » L, is a compact operator. Hence it easily follows that for
each ¢ there exists a number C(¢) for which

[EIE, < ellé i + C@ €]

The rest of the proof is carried. out as for s = 2.

Proposition 4, and along with it the main lemma and Assertion 1° of
Theorem 1, are proved.
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5. Homeomorphic projections of attractors

Here we will prove the following geometrical theorem.

Theorem 2’. A compact subset of Euclidean space, having entropic dimension d,
projects homeomorphically onto a plane L in general position,® along the orthogo-
nal complement to L, if dim L > 2d.

Theorem 2 of the Introduction follows immediately from Theorem 2’ and
Theorem 1 of subsection 2.5. Theorem 2’ generalizes the following result for
manifolds. ‘

The easy Whitney Theorem (see, for example, M. Hirsch [15]). 4 compact
d-dimensional subset of Euclidean space (here, in distinction from the preceding
theory, d is an integer!) orthogonally projects onto a plane L in general position
along the orthogonal complement to L if dim L >2d.°

5.1. Some properties of Hausdorff and entropic dimensions

For both dimensions one or the other of the elementary properties possessed by
the usual topological dimension turns out to be false. We shall formulate,
without proof, certain results, part of which are known, and part of which are
recent results of the student B. I. Bakhtin, Professor E. M. Landis, and the
author.

Natural properties. 1°. dim, (K, UK,) < max(dimy K, dimy K5).

2°. dim, (K, x K,) = dimy K, + dim, K, (H. Wegmann [34]). The same is
true for the entropic dimension (V. Bakhtin [8]).

3°. dimgz(K x K) <2 dim; K (subsection 5.3 below).

It follows from Assertion 2 that this non-strict inequality is always an equality.

Relation between the dimensions. There exists a set of Hausdorff dimension 0
and arbitrarily large entropic dimension.

8 We say that a generic k-dimensional plane in an N-dimensional linear space has a certain property
if the set of planes having that property is thick in the Grassmann manifold G, k). A thick set is a
countable intersection of open everywhere dense sets.

91 have ventured to alter the formulation of the classical theorem somewhat in-order to approximate
it to the “entropic” situation.
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Pathological properties. 1°. There exist two sets such that the entropic dimen-
sion of their union is larger than the dimension of each of the sets.

2°. There exist two sets such that the Hausdorff and entropic dimensions of
the direct product of these sets exceed the sum of the corresponding dimensions
of the factors (V. Bakhtin [8]).

3°. There exists a set such that the Hausdorfl dimension of the Cartesian
square of this set is larger than twice the dimension of the set itself. E. M.
Landis reduced this assertion to Assertion 2°. The same reduction proves
Assertion 1°.

I do not know whether Theorem 2’ remains true if the entropic dimension is
replaced by the Hausdorff one. Assertion 3° suggests that the answer is negative.

5.2. Theorem 2" and the easy theorem of Whitney

The considerations of this subsection relate to both theorems in the heading. Let
M < R" be the subset or submanifold mentioned in Theorem 2’ or in the “‘easy
Whitney theorem”, respectively. It suffices to prove that if N > 2d + 1, then the
projection along a line / in general position onto the hyperplane orthogonal to
[ is a homeomorphism.

Suppose that S¥—' is the unit sphere in RY. To each bundle of oriented
parallel lines in RY there corresponds a point on the sphere SV~ ! (the directing
vector of the bundle), and conversely. In other words, the Grassmann manifold
of oriented lines passing through 0 is the sphere SV ~!. A point x € SV~ will be
said to be M-bad if at least one of the lines in the corresponding bundle
intersects M in two or more points, and M-good otherwise. We denote by T the
set of all M-bad points, and by A the set of all M-good points of S¥—1. It
suffices to show that the set A is thick.

To that end we describe the set X explicitly. Denote by A the diagonal of
the direct product R*¥=RYx RY; A={(x,x)|x e R"}. Denote by J the
mapping

REMNA-RN{0},  (x,») »x—y,
and by © the mapping
RM{0} -»SV=1,  x—x/[x|.

Obviously, the mapping 7 o d is smooth and T =7 o (M x M\A).
The following assertions are obvious for a compact manifold and complete
the proof of the “easy Whitney theorem”.
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Assertions. 1°. The dimension of the direct product of a compact d-dimen-
sional manifold M onto itself is equal to 2d.

2°. The image of a smooth (not necessarily compact) 2d-dimensional mani-
fold under a smooth mapping into a manifold S of dimension 24 has a thick
complement in S.

5.3. Completion of the proof of Theorem 2’

It remains to prove the following analogues of Assertions 1° and 2° in the
“entropic situation”.

Analogues. 1°. Let M be a compact subset of RY, with dimz M = d. Then
dim, M x M <2d.

2°. Suppose that K is a closed bounded subset of the space RM\ A (K may be
nonclosed in RM). Let S be a smooth (n— 1)-dimensional manifold, and
@: R*"\A—S a smooth mapping. Then, if dimzK <N —1, the complement
S\@K is thick in S.

Proof of Assertion 1°. The definition of entropic dimension is well suited to the
upper estimation of the dimension of the Cartesian square. Indeed, suppose that
k > d is any number. Then

Em, (M) =0;

accordingly, for any & > 0 and ¢ > 0 there exists a covering U of the set M by

balls of the same radius R < ¢, the k-dimensional volumes of which is less than

. Suppose that the covering U consists of 9 balls with centers xhoo., x%,

Then, first,
Rt <o

Second, the collection of balls with centers (x’,x), i,j € {1, ..., N}, of radius
ﬁR in the space R?" forms a covering of the set M x M. We denote this
covering by U, and estimate its 2k-dimensional volume:

Vo (0) = 29R*N2 < 292,
Since ¢ and ¢ are arbitrary, it therefore follows that
Em, (M x M) =0,

with which Assertion 1° is proved.
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Proof of Assertion 2°. Suppose that K| is a sequence of compact sets exhaust-
ing K. One could for instance take

K,=(x,y)eK||x—y|=1/s.

Put X, = ¢K,. It follows easily from the definition of entropic measure that this
dimension does not increase under smooth mappings. The set X, is closed, as the
continuous image of a compact set, and, by what was said above,
dimg %, < N — 1. Accordingly, the complement A, = S\Z, is open and every-
whergense in- S (otherwise the set X, would contain a subregion of the
manifold S, and its entropic dimension would be equal to N — 1). That means
that the intersection

ﬁ A, =S\pK

s=1

is a thick set, as we were required to prove.

5.4. Theorem on inclusion in the graph

Suppose that K is a compact set of entropic dimension d, L a plane in general
position relative to K, dim L >2d, L+ the orthogonal complement to L. Then
there exists a continuous mapping L — L+ whose graph contains K.

Proof. Let m,: K— L be the projection along L+, K’ = n,K. The restriction
Ty|x: K — K’ is a homeomorphism (that is the reason for the requirement that
L be in general position). Therefore the continuous mapping s: K’ — K inverse
to 7, is defined. Suppose n* is the projection K — L+ along L. The mapping
n+ o s is continuous. The choice of a basis in L+ transforms it into a continuous
vector-function. By Urysohn’s theorem, that vector-function may be continu-
ously extended to a continuous vector-function on L, which yields the desired
mapping L - L',
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