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Abstract

Global bifurcations in the generic one-parameter families that unfold a vector field
with a separatrix loop on the two-sphere are described. The sequence of bifurcation
that occurs is in a sense in ono-to-one correspondence with finite sets on a circle having
some additional structure on them. Families under study appear to be structurally
stable. The main tool is the Leontovich-Mayer-Fedorov (LMF) graph, analog of the
separatrix sceleton - an invariant of the orbital topological classification of the vector
fields on the two-sphere. Its properties and applications are described.
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1 Introduction
Classification of various objects is the main topic of the Catastroph Theory. Various classes
of singularities of maps, vector fields and bifurcations are classified up to now. Surprisingly,
global bifurcations in the two sphere are not yet classified at all. In 1985 Arnold suggested
that for any number of parameters there is in a sense only a finite number of different classes
of weak topological equivalence of generic local families of vector fields on the two-sphere.
This is not the fact even for one-parameter families. Classification of such families that
unfold a vector field with a separatrix loop is the main contents of this paper.

Local and non-local one-parameter bifurcations in the plane seem to be well known.
The following degeneracies may be met in an unavoidable way in typical one-parameter
families:

AH: a non-hyperbolic singular point with a pair of non-zero pure imaginary eigenvalues;

SN: a saddle-node singular point;

SC: a saddle connection between two different hyperbolic saddles;

HC: a homoclinic curve of a saddle-node;

SL: a separatrix loop of a hyperbolic saddle;

PC: a parabolic cycle, that is, a non-hyperbolic limit cycle.
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For future references, this list of degeneracies will be called a basic list. AH stays for
Andronov – Hopf. Other abbreviations correspond to the first two words in the description
of a degeneracy.

The bifurcations in these classes are described in many sources [?] and references therein.
In fact, local bifurcations are described near non-hyperbolic singular points (classes AH and
SN), and semi-local ones, that is, happening in a neighborhood of a homoclinic curve or
a limit cycle are described for the last four classes. No interesting bifurcation happens in
these neighborhoods for the classes two, six and three. In the first two classes the non-
hyperbolic singular point or cycle either splits in two on one side of the critical parameter
value, or vanishes on the other side. The saddle connection simply brakes. In the first,
fourth and fifth classes a limit cycle is generated under the bifurcation.

There is a prejudice that the bifurcations in the typical one-parameter families are thus
completely described. Yet the discovery of sparkling saddle connections by Malta-Palis [?]
shows that this is not the fact.

Let us give a heuristic description of bifurcations in the families of class SL. It may
happen that inside the loop of the saddle L (that is, in the domain that is bounded by the
loop and contains no other separatrix of the saddle L) there are several hyperbolic saddles
whose separatrixes wind towards the loop, that is, have it as an α or ω limit set.

Definition 1. Large bifurcation support of a vector field of class SL is the union of the
saddle loop of this field, and the closures of all the separatrixes that wind to or from this
loop.

On a heuristic level, the large bifurcation support is a part of a phase portrait that actu-
ally bifurcates. This is a general concept whose study may be useful for the generic theory
of global planar bifurcations. It is introduced in [?] and studied in [?], work in progress. We
will show that all the bifurcations in the local families of class SL are completely determined
by the bifurcations that occur in a germ of a neighborhood of the large bifurcation support
of a vector field of class SL corresponding to the critical parameter value zero.

The term bifurcation support was introduced by Arnold [?] in 1985. Bifurcation support
was addressed to be a set in whose neighborhood all the bifurcations take place. Unfortu-
nately, the set defined by Arnold did not play this role. For the vector fields of class SL it
is the separatrix loop only. Yet the bifurcations in an SL family take place near the large
bifurcation support defined above. So we need another term for the set near which all the
bifurcations take place.

Quite unexpectedly, the bifurcations near the large bifurcation support in an SL family
are characterized by a finite set on a circle with a special equivalence relation for some
pairs of points in this set. Any finite set with this equivalence relation may be realised for
some local SL family. The rigorous formulation and proof of this statement is given in what
follows.

2 Basic definitions
An open and dense set in Vectk(Sn), k ≥ 1, is formed by vector fields that satisfy the
following conditions:

• all the singular points and limit cycles are hyperbolic

• there are no saddle connections, that is, no mutual separatrixes of hyperbolic saddles.
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Vector fields with these properties are usually called Morse-Smale or generic. Non-
generic vector fields will be called degenerate.

Definition 2. A vector field is called quasigeneric if it has exactly one degeneracy from
the basic list, and satisfies the following genericity assumptions

1. all the singular points and limit cycles except for those mentioned in the basic list are
hyperbolic;

2. there are no saddle connections except for those mentioned in the basic list;

3. for the non-hyperbolics singular point of the vector field of class AH, the third deriva-
tive at 0 of the corresponding normalized Poincaré map is non-zero;

4. the non-hyperbolic singular point of a vector field of the class SN or HC is of multi-
plicity two;

5. the homoclinic curve of a vector field of class HC enters the saddle-node singular
point strictly inside the parabolic sector

6. the characteristic value of a saddle with a separatrix loop for a vector field of class
SL is different from 1 (recall that a characteristic value of a hyperbolic saddle is a
magnitude of the ratio of its eigenvalues, the negative one in the denominator);

7. for a vector field of class PC, the multiplicity of the non-hyperbolic limit cycle equals 2.

Definition 3. A quasigeneric vector field is of class SL if its separatrices of hyperbolic
saddle forms a saddle-loop. The set of all these vector fields is defined by SL.

In [?] it is proved that the set SL is an immersed Banach submanifold of V ectk(S2) for
any k ≥ 4.

Definition 4. A local one-parameter family V = {vε} is of class SL if v0 ∈ SL, and V is
transversal to SL.

Definition 5. Two vector fields v and w on S2 are called orbitally topologically equivalent,
if there exists a homeomorphism S2 → S2 that links the phase portraits of v and w, that is,
sends orbits of v to orbits of w and preserves their time orientation.

Definition 6. Let B, B0 be topological balls in R. Two families of vector fields {vα, α ∈ B},
{wβ, β ∈ B0} on S2 are called weakly topologically equivalent if there exists a map

H : B × S2 → B0 × S2, H(α, x) = (h(α), Hα(x))

such that h is a homeomorphism, and for each α ∈ B the map Hα : S2 → S2 is a homeo-
morphism that links the phase portraits of vα and wh(α).

Definition 7. A family of vector fields is called weakly structurally stable if it is weakly
topologically equivalent to any nearby family.

In what follows, we deal with local families.

Definition 8. A local family at α = 0 with the base (R1, 0) is a germ on {0} × S2 of a
family given on B ×M , B 3 0, B ⊂ R is open. Two local families are weakly topologi-
cally equivalent if they have locally weakly topologically equivalent representatives, and the
corresponding homeomorphism of the bases maps 0 to 0.
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Figure 1: Complicated large bifurcation support

Definition 9. An unfolding of a vector field is a local family for which this field corresponds
to the critical (zero) parameter value. We say that this family unfolds the vector field.

We will be mainly interested in generic unfoldings. In what follows local families (the
germs) will be identified with their representatives whose base is so small that all the
requirements below that are guaranteed by the smallness of the base hold true.

3 Main results
Theorem 1. Generic one-parameter family of class SL is weakly structurally stable.

Theorem 2. Suppose that two quasigeneric vector fields of class SL are orbitally topologi-
cally equivalent. Then their generic unfoldings are weakly topologically equivalent.

This theorem provides a necessary and sufficient condition for the equivalence of local
SL families; it is called the SL criterion.

Large bifurcation supports defined above may have a complicated topological structure,
see Figure ??. They determine a sequence of bifurcations (the bifurcation scenario) that
occur in a one-parameter family of class SL.

This scenario, in turn may be characterized in a simple way by the so called marked
finite sets on a circle.

Definition 10. A proper equivalence relation on a finite set A = (a1, . . . , al) on an oriented
circle is defined as follows. Equivalence classes are single points and pairs of points with
the following restriction: if a ∼ b, c ∼ d then the pairs (a, b), (c, d) are not intermingled on
the oriented circle. This means that the arc from a to b either contains no points from the
pair (c, d), or contains both. A finite set with this equivalence relation is called marked.

Two marked sets on an oriented circle are equivalent iff there exists an orientation-
preserving homeomorphism of a circle that maps the first set into the second one and respects
the order of points on the circle and the equivalence relation.

We will prove in Section ?? that the bifurcation scenarios in the SL-families are in
one-to-one correspondence with the equivalence classes of the marked sets on a circle. The
exact form of this correspondence is described below.

Theorem 3. Any marked finite set on a circle may be realized as a set corresponding to a
large bifurcation support of some vector field of class SL.
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4 LMF graphs and their applications

4.1 Generic and quasigeneric vector fields

Theorem 4. (Andronov—Pontryagin) Generic vector fields on S2 are structurally stable.

Theorem 5 (see [?]). Quasigeneric vector fields form an open and dense subset of the
set Σ of structurally unstable vector fields. Quasigeneric vector fields are structurally stable
inside the corresponding classes AH,SN, SC,HC, SL, PC.

The latter statement means that for any quasigeneric vector field v there exists a neigh-
borhood in the corresponding class such that any vector field from this neighborhood is
orbitally topologically equivalent to v. A short proof of this statement is presented below.

Theorem ?? follows immediately from Theorems ?? and ??. Indeed, let V be a local
family of the class SL, and W be a close one from the same class. Then the vector fields
v0 and w0 are orbitally topologically equivalent by Theorem ??. Then the families V and
W are weakly equivalent by Theorem ??.

4.2 Leontovich-Mayer-Fedorov graph for quasigeneric vector fields

A copmplete topological invariant of a vector field on a two sphere may be presented in
three different ways. The first one is the scheme of the vector field obtained in [?]. The
second one is the separatrix sceleton, see [?] and references therein. We define it in the
next subsection just for the survey purposes; it will not be used below. The third one is a
so called LMF graph, see [?] and [?]. The general definition of all these objects is rather
complicated. We consider here only the case of quasigeneric vector fields.

4.2.1 Separatrix sceletons

Quasigeneric vector fields have only hyperbolic singular points, except probably for one;
this one point is a slow focus or a saddle-node of multiplicity two. These vector fields have
only hyperbolic limit cycles except probably for one, which is a parabolic limit cycle of
multiplicity two. Separatrices of such vector fields are separatrices of hyperbolic saddles, or
the phase curves that include the boundaries of the hyperbolic sectors of the saddle-node.

Definition 11. An extended separatrix sceleton of a quasigeneric vector field is the union
of all its singular points, limit cycles and separatrices.

Definition 12. A completed separatrix sceleton of a quasigeneric vector field is the union
of its extended separatrix sceleton together with one orbit in each connected component of
the complement to the sceleton.

Theorem 6. [see [?] Section 1.9, and references therein] Two quasigeneric vector fields
are orbitally topologically equivalent iff their completed separatrix sceletons are isotopic on
the two-sphere.

In fact, a much stronger theorem is stated in [?].
A separatrix sceleton is not a graph: separatrixes that wind towards a limit cycle or a

separatrix loop have infinite length. In what follows we will use graphs as invariants. This
will allow us to apply the graph theory; these applications are crucial for what follows.
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4.2.2 Transversal loops and modified separatrix sceletons

Consider a quasigeneric vector field v. Choose an orientation on the sphere. For any
attracting or repelling hyperbolic singular point of v there exists a curve without contact
(called in future transversal loop ) that surrounds this point; this curve is C1 smooth and
splits the sphere in two parts. Let us call interior the part that contains the singular point
mentioned above. The transversal loop may be so chosen that the phase portrait of v inside
this curve is topologically equivalent to ẋ = −x for an attractor or to ẋ = x for the repeller.
Let us fix such curves for all the attracting and repelling singular points of v. Let us orient
the transversal loop as a boundary of the domain that contains the singular point; namely,
this point lies to the left of the oriented loop.

A similar construction for any limit cycle of v provides two closed oriented transversal
loops, one on each side of the cycle, such that that the vector field v in the closed annulus
bounded by the cycle and the curve is orbitally topologically equivalent to one of the
samples: ϕ̇ = 1, ṙ = ±(1 − r); ϕ̇ = −1, ṙ = ±(1 − r); the samples are considered in an
annulus r ∈ [1, 3/2] or r ∈ [1, 1/2]. Let us orient these transversal loops as components of
the boundary of the domain that contains the limit cycle.

If v is of the class SL, then v has a separatrix loop of a hyperbolic saddle. Denote
the saddle by L, and the loop by γ. Define the interior domain of γ to be a domain
bounded by γ and containing no separatrixces of L. There exists a closed curve C without
contact oriented as the boundary of the domain that contains L and such that v in the
annulus between C (included) and γ (excluded) is topologically equivalent to one of the
fields ϕ̇ = 1, ṙ = ±(1− r), considered in an annulus r ∈ (1, 1/2]. From now on, we suppose
that the infinity is outside the loop γ. Hence, the transversal loop is oriented clockwise.

Any outgoing separatrix of a quasigeneric vector field has a hyperbolic saddle or a
saddlenode as an α-limit set. A separatrix loop of a vector field of class SL has a saddle as
an ω-limit set too. A saddle connection of a vector field of class SC has another saddle as
an ω-limit set. All the other separatrixes of a quasigeneric vector field have a hyperbolic
attracting singular point or a limit cycle (not necessary hyperbolic in the class PC), or
a loop γ (for the fields of class SL) as an ω-limit sets. Therefore, any such separatrix
intersects the curve without contact constructed for its ω-limit set. The closure of the
arc of the outgoing separatrix between its α-limit set and the intersection point with the
transversal loop defined above is called the truncated separatrix, and its non-singular vertex
is called the truncation vertex. In the same way truncated ingoing separatrices and their
truncation verteces are defined; only α and ω-limit sets are exchanged.

Definition 13. The modified separatrix sceleton of a quasigeneric vector field is the union
of all the singular points, time oriented limit cycles and truncated separatrices, together
with all the oriented transversal loops constructed above.

There are two points of view on the spherical graphs constructed above: a set theoretical
and combinatorial ones. From the first point, the graph is a subset of the two sphere. From
the second one, it is a finite set of labeled verteces and labeled oriented edges that connect
some of the verteces. As a subset of the sphere, the LMF graph constructed below belongs
to the truncated separatrix sceleton.

4.2.3 Vertexes of the LMF graph

Vertexes of an LMF graph of a quasigeneric vector field are:

1. Singular points of the vector field
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2. Truncation verteces

3. An arbitrary chosen one point of any limit cycle

4. An arbitrary chosen one point on any transversal loop, in case when this curve contains
no truncation verteces; in what follows such a curve will be called empty.

4.2.4 Edges of the LMF graph

Edges of an LMF graph of a quasigeneric vector field are:

1. Time oriented saddle connections whose verteces are the saddles that they connect

2. Time oriented truncated separatrixes with the corresponding singular point and trun-
cation vertex as verteces

3. Time oriented limit cycles with the unique chosen vertex

4. Arcs of the transversal loops with the orientation inherited from these curves that
connect two subsequent truncation points

5. Oriented empty transversal loops with one chosen vertex.

4.2.5 Labels

Each vertex which is a singular point is labeled by its type: attractor, repeller, saddle or
a saddle-node. On other verteces, we put labels showing if they are points on the cycles
or points on the non-contact curves. Each edge is labeled depending on whether it is an
ingoing or outgoing separatrix or both, a limit cycle, or an arc of a non-contact curve (that
may coincide with the whole curve). For the arcs of transversal loops we put labels showing
whether this arc is absorbing (the ω-limit set of its points is the limit set corresponding to
this transversal loop) or outgoing (absorbing in the negative time).

This completes the constrsuction of the labeled oriented LMF graph for a quasigeneric
vector field.

4.3 Leontovich-Mayer-Fedorov graph as an invariant

Definition 14. Images of two embeddings of one abstract oriented labeled graph into a
sphere S2 are called isotopic, if there exists an orientation-preserving homeomorphism of
the sphere, that maps the image of the first embedding to the image of the second one and
preserves the orientation of the edges and the labels.

We use the following result of R. Fedorov [?], based on the previous result of Andronov,
Leontovich, Gordon, Mayer [?].

Theorem 7. [see [?] and references therein] Two quasigeneric vector fields are orbitally
topologically equivalent iff their labeled oriented LMF graphs are isotopic on the two-sphere.
This means that they are the images of two isotopic embeddings of one and the same abstract
oriented labeled graph.

In [?], [?] an analogous theorem is stated in a more general setting. Our definition of
the LMF graph slightly differs from the one given in [?], but the two kinds of graphs may
be easily expressed through one another, and we skip the details.
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4.4 Isotopy of spherical graphs

The theorem above allows us to reduce the problem of equivalence of vector fields to that of
the embeddings of the graphs. A necessary and sufficient condition of the latter equivalence
is very simple.
Theorem 8 ( [?], [?] ). Images of two embeddings of the same connected abstract graph on a
sphere S2 are isotopic iff corresponding isomorphism of images preserves a counterclockwise
order of edges at each vertex.

If the isomorphism of oriented graphs preserves a counterclockwise order of edges at
each vertex, we will say that it satisfies the star condition because this property is related
to the star of edges at any vertex.
Definition 15. Faces of spherical graphs are connected components of the complement to
the graph.

LMF graphs are usually not connected; their faces may be either topological discs, or
annuli, see Lemma ?? below. We will use the following theorem.
Theorem 9. Suppose that two oriented planar graphs Γ1,Γ2 (not necessarily connected)
are embedded in S2 by maps ϕ1 : Γ1 → S2, ϕ2 : Γ2 → S2, and the (open) faces of the graphs
ϕjΓj , j = 1, 2 in S2 are topological discs or annuli. Choose an orientation in S2. Suppose
that these graphs are isomorphic as oriented graphs, and the isomorphism, denote it by g,
satisfies the star condition. Suppose that the map ϕ2 ◦ g ◦ ϕ−1

1 extends to an orientation-
preserving homeomorphism of all the annuli-shaped faces of the graph Γ1. Then the map
ϕ2 ◦ g ◦ϕ−1

1 can be extended to the orientation-preserving homeomorphism of S2, so ϕ1(Γ1)
is isotopic to ϕ2(Γ2).

The idea of the proof of this theorem is to add edges through all annuli-shaped faces of
our graph, so that the extended graph is connected, and then use Theorem ??. A detailed
(still easy) proof may be found in [?]. The latter condition of the theorem is called the
annuli faces condition.

4.5 Applications

These results imply a very simple proof of the classical structural stability theorems for
generic and quasigeneric vector fields. A sketch of this proof is presented below; it is based
on the following lemma.
Lemma 1. Consider a family of C1 embeddings fε of the same finite graphM in the sphere.
Suppose that the graphs fε(M) have the discs and annuli shaped faces only. Let fε be the
continuous in ε ∈ [0, 1]. Then the graphs Mε = fε(M), ε ∈ [0, 1], are pairwise isotopic.
Proof. Both star and annuli faces condition hold under the homotopy.

4.5.1 Structural stability of Morse-Smale vector fields on S2

Corrolary 1. A Morse-Smale vector field on S2 is structurally stable.
Proof. We will prove that for any Morse-Smale vector field v there exists a neighborhood
U of v in Vect1(S2) such that the LMF graphs of the fields from U are isotopic to that of
v. For this let us take U as a ball:

||v − w||C1(S2) ≤ r;

r is so small that the following holds:
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• for any singular point P of v there exists a C1-map P : U → S2, w 7→ P(w), such
that P(w) is a hyperbolic singular point of w; let λ1(w), λ2(w) be the eigenvalues of
P(w);

• for all w ∈ U , the points P(w) are hyperbolic singular points of the vector field w,
and the functions Re λ1,Re λ2 keep sign on U ;

• for any limit cycle c of v (which is hyperbolic because v is Morse - Smale) there exists
a C1 map Γ : U → S2 such that the orbit of the point Γ(w) under the phase flow of
the vector field w is a hyperbolic limit cycle cw; cv = c;

• for any ingoing separatrix s of a hyperbolic saddle S of v there exists a continuous
family of separatrixes sw, w ∈ U such that sv = s, and the α-limit set of sw depends
continuously on w. This means the following. The α-limit set of s under v may be
either a repeller, denote it by P , or a limit cycle, denote it by c. The α-limit set of
sw under w is P(w) in the first case, and cw in the second one. A similar statement
holds for outgoing separatrixes.

Such a ball exists by the infinite dimensional implicit function theorem. Let us prove
that this r may be taken so small that all the singular points and cycles of the vector
fields w ∈ U are generated by the singular points and limit cycles of the vector field v as
described above. By contraposition, let wn be a sequence of vector fields such that wn has
a singular point Pn 6= P(P ) for any P ∈ Sing v. By compactness of the sphere, there exists
a convergent subsequence Pnk

→ P. Then, P ∈ Sing v. Hence, Pnk
= P(wnk

), because the
only singular points close to P of the vector fields w close to v are of the form P(w), a
contradiction. In a similar way, let wn be a sequence of vector fields such that wn has a limit
cycle cn 6= cwn for any limit cycle c of the vector field v. The sequence cn has a subsequence
cnk

that converges in a sense of the Hausdorff distance to a limit cycle c0 or to a polycycle
γ of the vector field v. As v is Morse–Smale, it has no polycycles, hence the latter case
is impossible. For the same reason, the limit cycle c0 of the vector field v is hyperbolic.
Hence, cnk

emerges from c0 as described above, a contradiction. As a byproduct, we proved
that the set of Morse-Smale vector fields on the sphere is open.

Let us now check that the LMF graphs of the vector fields w ∈ U may be chosen to
be continuous in w. Take all the attracting and repelling hyperbolic fixed points of v. Let
us surround them by transversal loops. These loops remain to be transversal for all the
vector fields C1-close to v. The same holds for the hyperbolic limit cycles of v and their
transversal loops.

The hyperbolic saddles and their truncated separatrices depend continuously on the
vector field. Hence, the LMF graphs of the vector fields C1-close to v may be chosen to
depend continuously on the field.

For any w close to v consider now a one-parameter family Vw = {wε|ε ∈ [0, 1]}:

wε = v + ε(w − v), wε ∈ U.

The LMF-graph of wε depends continuously on ε by the choice of U . Hence, by Lemma
1, the LMF-graphs of wε are pairwise isotopic for all ε ∈ [0, 1]. Therefore, wε is orbitally
topologically equivalent to v. Hence, v is structurally stable.

4.5.2 Structural stability of vector fields inside the class Σ

Corrolary 2. A quasigeneric vector field on S2 is structurally stable inside the correspond-
ing class from the basic list.
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Proof. The proof is similar to that for the Morse-Smale vector fields. Let v be a quasigeneric
vector field. For any hyperbolic singular point P and limit cycle c of v, let P(w) and cw be
the same as above.

Non-hyperbolic elements of the phase portrait of v should be considered case by case.
AH: the vector field v has a singular point Q with a pair of purely imaginary eigenvalues;

the corresponding Poincaré map has a non-zero third derivative. If it is negative (positive)
the point Q is attracting (repelling). For all quasigeneric vector fields w, C3-close to v, with
an AH point Q(w), consider the Poincaré map corresponding to Q(w). The first derivative
of this map at zero is 1 because the vector field is of class AH, the third derivative keeps
sign by continuity, and the same non-contact curve C may be taken around Q(w) for all
the vector fields w.

SN: the vector field v has a saddle-node singular point P of multiplicity 2. All the
C2-close quasigeneric vector fields w have saddle-node singular points P(w) with the same
property: P(w) depends continuously on w, and P(0) = P . For all these vector fields the
point P(w) has a separatrix of two hyperbolic sectors. If it is outgoing, then it has an
ω-limit set, which is an attracting singular point Q(w), or an attracting limit cycle γw,
both continuous in w. The case of ingoing separatrix is treated similarly.

SC: the vector field v has a saddle connection between two hyperbolic saddles, say, P
and Q; the connection depends continuously on w in the C1-topology on the space of the
vector fields.

HC: the vector field v has a saddle-node singular point P , and an outgoing (or ingoing)
separatrix l of P that turns back to the parabolic sector of P in the positive (respectively,
negative) time. All the C1-close quasigeneric vector fields have a singular point P(w) of
the same type, P(v) = P , and a separatrix of two hyperbolic sectors of P(w) that turns
back to P(w) through its parabolic sector, and depends continuously on w.

SL: the vector field v has a hyperbolic saddle P with a separatrix loop γ, and the
characteristic number different from 1. All the C1-close quasigeneric vector fields have a
hyperbolic saddle P(w) with a saddle loop γw and the characteristic number different from
1.

PC: the vector field v has a parabolic-limit cycle c of multiplicity 2. All the quasigeneric
vector fields w C2-close to v have a parabolic limit cycle cw of multiplicity 2 that depends
smoothly on w.

After these arguments we see that the LMF graphs of quasigeneric vector fields of the
same class from the basic list close to fixed one depend continuously and even smoothly
on the vector field. In [S] it is proved that the set of degenerate vector fields of the
same class near a quasigeneric one form an immersed Banach submanifold. Hence, by
a local diffeomorpism of the ambient space Vect3(S2), it may be transformed to a piece
of a hyperplane. A linear homotopy in this hyperplane allows us to apply Lemma ??
and conclude the proof of the Corollary; Lemma ?? is applicable by Lemma ?? proved
below.

4.6 Faces of the LMF graphs

For the proof of Theorem ??, we will need a description of the faces of the LMF graphs.

Lemma 2. Faces of an Leontovich-Mayer-Fedorov graph of a generic or quasigeneric vector
field are topological discs or annuli. The annular faces may be of the following types:

1. an annulus between a transversal loop and the corresponding limit cycle;
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2. a punctured disc between a transversal loop and the corresponding attracting or re-
pelling singular point;

3. an annulus between two “empty” transversal loops;

4. an annulus between a separatrix loop of a hyperbolic saddle and the corresponding
transversal loop.

Remark 1. Case 4 never occurs for generic vector fields.

Proof. Consider a face Ω of the Leontovich-Mayer-Fedorov graph of a quasigeneric vector
field v, which is not of type 1, 2 or 4 from ??. Let p be an interior point of Ω, γ(p) its orbit,
α(p) and ω(p) its ω-limit sets. Any trajectory of a quasigeneric vector field has α and ω
limit sets of the following four types only:

• a limit cycle,

• a sink or a source,

• a saddle,

• a separatrix loop of a hyperbolic saddle.

Neither of the sets α(p) and ω(p) may be a saddle, or else γ(p) is a separatrix and belongs to
the Leontovich-Mayer-Fedorov graph. Then p is a boundary point, and not the interior point
of the face, a contradiction. If the set α(p) is a repelling singular point, or a hyperbolic limit
cycle, or a separatrix loop, and the negative orbit of p does not intersect the corresponding
transversal loop, then the face that contains p is of type 1, 2 or 4. This contradicts to
the assumption. Hence, in this case the negative orbit of p intersects the transversal loop
corresponding to α(p). Similarly, if ω(p) is an attracting singular point, or a hyperbolic
limit cycle, or a separatrix loop, then the positive orbit of p intersects the transversal loop
corresponding to ω(p).

We conclude that if the face Ω is not of the type 1, 2 or 4 from the proposition, then
the curve γ(p) intersects the non-contact curves C− and C+ that surround α(p) and ω(p).
Indeed, for every hyperbolic attractor, a point or a cycle, every orbit that tends to this
attractor intersects exactly once the transversal loop corresponding to this attractor.

Let pα = C−
⋂
γ(p), pω = C+ ⋂

γ(p). Then a germ of the Poincaré map is defined:

P : (C−, pα)→ (C+, pω).

There are two cases:

1. the germ P may be extended to the whole curve C−;

2. the germ P may not be extended to the whole curve C−, see Figure ??.

Consider Case 1. In this case P (C−) = C+, and the vector field v in the closed
annulus between the loops C−, C+ is orbitally topologically equivalent to ṙ = 1, ϕ̇ = 0
in {r ∈ [1, 2]}. The annulus between these loops is a separate face of the LMF graph of
v. Indeed, no separatrix enters this annulus from outside: the faces adjacent to the curves
C−, C+ contain in their boundary the element to which the transversal loop corresponds.
This element may be a singular point, a cycle, or a separtrix loop, if v is of class SL.

So in the first case Ω is of type 3.

11



Figure 2: Faces of the LMF graph

Consider now Case 2. Suppose that P may be extended from a neighborhood of pα to
a proper subarc α of C−. By the continuous dependence of the orbits on initial conditions,
the arc α is open. Let q be its boundary point. Then the orbit γ(q) of q does not reach
C+. Then its ω-limit set belongs to an annulus bounded by C− and C+. It may not be a
hyperbolic sink or a limit cycle, because the basins of attraction of these sets is open, and
the orbits from a whole neighborhood of q would not reach C+. But q ∈ ∂α, a contradiction.
So, ω(q) is a saddle.

The arc α may have one endpoint, say q, or two endpoints, say q and q′, see Figure
??. In the first case, α = C− \ q. Consider the second case. Take a sequence pn ∈ α,
pn → q. Let γn be the arcs of the phase curves of v between pn and P (pn) ∈ C+. Then
there exists an arc γ = lim γn in sense of the Hausdorff distance; γ is a union of the (arcs of)
separatrices. For quasigeneric vector fields γ contains no more than one saddle connection,
hence no more than two saddles. Denote the truncation vertex γ ∩ C+ by Q.

In the same way take a sequence p′n ∈ α, pn → q′, and construct an analogous curve γ′
combined by arcs of separatrices of v with the endpoints q′ ∈ C−, Q′ ∈ C+. Let β be the
arc of C+ between Q and Q′ such that P (α) = β. Then the face Ω of the LMF graph that
contains p is a topological disc bounded by the union

∂Ω = α ∪ γ ∪ β ∪ γ′;

we neglect the orientation.
The case of the unique endpoint q is treated in the same way, only the sequence pn

converges to q from one side, and the sequence p′n from another one.

5 Sparkling saddle connections in SL families

5.1 Marked finite sets

Consider a vector field v of class SL. Let L be a saddle of v with the separatrix loop γ.
The interior domain of γ is the one that contains no other separatrix of L. By assumption,
the characteristic number λ of L is different from 1. Without loss of generality we may
assume that λ < 1; otherwise we reverse the time. Let C be a transversal loop close to γ
and oriented as a component of the boundary of the topological annulus bounded by C and
γ, hence, clockwise.

As λ < 1, the separatrix loop repels the orbits: nearby phase curves of v inside γ wind
to γ in the negative time. All the saddles located inside γ are hyperbolic and form a finite
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set. Consider all the separatrices of this saddle that wind to γ in the negative time. Each
one intersects C at exactly one point. Let us enumerate these points in the order as they
are located on the oriented curve C: A = {a1, ..., aK}. Say that two points in this set are
equivalent iff they belong to two separatrices of the same saddle. A saddle whose separatrix
passes through ak is denoted by Ik, and the corresponding separatrix is denoted by lk. If
another separatrix of the same saddle passes through a point al, this saddle is also denoted
by Il:

Ik = Il ⇔ ak, al are equivalent.
Thus the set A becomes marked. This completes the construction of the marked finite set
that corresponds to a vector field of class SL.

Let w be any vector field C1- close to v. A similar construction provides the following
objects that play for w the same role as L,C,A, Ik play for v: a saddle L(w) close to L; the
same non-contact curve C, separatrixes lk(w) of the saddles Ik(w), the marked set A(w)
of their intersections with C; when w = v, these objects coincide with L,C,A, Ik. The
elements of the set A(w) are ordered in the same way as the corresponding elements of A.

5.2 Parameter depending monodromy map of the loop γ

Let Γ be a cross section transversal to γ and oriented inside γ; O = γ ∩ Γ. Let a = Γ ∩ C;
suppose that Γ is so chosen that a is located between aK and a1 on the oriented curve
C. Let V = {vε} be a one-parameter unfolding of v transversal to the Banach manifold
SL. It is well known that for ε on one side of zero the vector field vε has a limit cycle
close to γ. Suppose that this happens for ε < 0; otherwise we reverse the parameter.
Let Uε (respectively, Sε) be the unstable, same as “outgoing” (respectively, stable, same as
“ingoing”) separatrix of L(ε) := L(vε), continuously depending on ε and such that for ε = 0
they coincide with γ. Recall that Γ is oriented inside the loop γ; “up” and “down” on Γ is
understood in sense of this orientation. In our assumptions, for ε > 0, Uε crosses Γ below
Sε; in the opposite case, a limit cycle is generated from γ. Let u(ε) be the first intersection
point of Uε∩Γ. In a similar way sε = Sε∩Γ is defined. Note that u(0) = s(0) = O. Let x be
a coordinate on Γ that induces the same orientation on Γ as already chosen; xε = x−x(sε).
Let us call this ε a separatrix splitting parameter. For any small ε > 0 and small x0 > 0
a parameter depending monodromy map of segments of Γ corresponding to the loop γ is
well defined:

∆ε : [s(ε), x0]→ [u(ε), x′0], x′0 = ∆ε(x0).
Let dk(ε) be the xε-coordinate of the point of the countable intersection lk(ε)∩Γ, which is
the last one on the time oriented separatrix lk(ε) before ak(ε). Let us change the parameter
in such a way that xε(u(ε)) = ε. We will call this ε the separatrix splitting parameter. Then
the equation

∆n
ε (ε) = dk(ε) (1)

is equivalent to the following geometric statement: the separatrix Uε of the saddle L(ε)
after n winds hits the point dk(ε) ∈ lk(ε) and thus forms a saddle connection between L(ε)
and Ik(ε). Equation (??) is called a connection equation.

The following properties of the monodromy map are proved in [?]:
For any smooth function dk in (R, 0), any k ∈ {1, ...,K} and any n ∈ N, the solution εkn

of equation (??) exists. It is monotonically decreasing in n and tends to 0 as n→∞. It is
also monotonically decreasing in k ∈ {1, ...,K} for n fixed. Moreover, for any fixed n, the
function ∆n

ε (ε) monotonically decreases with ε small, and tends to 0 as ε→ 0. Moreover,
Dε∆n

ε (ε)→∞ as ε→ 0. (2)
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5.3 The bifurcation scenario

Recall that a = Γ ∩ C. Let d(ε) = xε(a). Consider an equation

∆n
ε (ε) = d(ε).

By the statement from [?] quoted above, this equation has a solution εn; εn → 0 as
n → ∞. The solution εn corresponds to the value of ε for which the separatrix Uε makes
n winds along γ and hits the point a = Γ ∩ C.

When ε decreases in [εn−1, εn), the intersection point dk(ε) starts from d = xεn−1(a) and
tends to d′ = xεn(∆−1

εn
(a)). Note that dk(εn) = xεn(a). Denote the (unique!) intersection

point of Uε with C by a(ε). When d(ε) changes from d to d′, the point a(ε) makes one turn
around C starting from a, and comes back to a. By the way, it meets the points ak(ε). As
Dεak is bounded in a neighborhood of 0, and Dεa(ε) → ∞ by (??), we conclude that the
equation

a(ε) = ak(ε), ε ∈ [εn−1, εn),

has a unique solution εkn for any k and n large enough. This implies that when ε changes
from εn−1 to εn, the saddle connections

Uε = lk(ε), ε = εkn,

occur. Moreover, on the interval [εn−1, εn) the values εkn decrease monotonically as k
increases.

This completes the description of the bifurcation scenario in an SL family for ε > 0.

5.4 Realization theorem

Here we give a sketch of the proof of Theorem ??. It relies upon Lemma ?? below. The
lemma is proved in [?], and we do not reproduce the proof here.

Consider a Morse–Smale vector field in a disc D with the boundary C transversal to v.
Let A be the set of the intersection points of the separatrices of v with C; as above, two
points of A are equivalent iff they belong to the separatrices of the same saddle. Thus A is
a marked set. Let us call it the characteristic set of v.

Lemma 3. Consider a marked set A on a circle C that is a boundary of a disc D. Then
there exists a C∞ Morse-Smale vector field v in D such that A is a characteristic set of v.

Let us take now an arbitrary smooth quasigeneric vector field w of class SL; suppose
that L is a saddle of w with a separatrix loop γ and with a characteristic number λ < 1.
Let C be a corresponding transversal loop inside γ. Consider a disc D bounded by C and
not containing γ. As λ < 1, the disc is absorbing. Let D′ = S2 \ D ∪ C, and w0 be the
restriction of w to D′.

Let now A be the prescribed marked set. Let v0 be a vector field in D provided by
Lemma ?? having an absorbing disc D and the characteristic set A. Let us glue together
the vector fields w0 and v0 to obtain one smooth vector field v on S2. This field is of class
SL and has a prescribed characteristic set A. This proves Theorem ??.

6 Proof of the SL-criterium
Here we prove Theorem ??.
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Figure 3: Part of the graph Xε that contains saddles L and Ik

6.1 Plan of the proof

Consider two quasigeneric vector fields of class SL, v and w, and suppose that they are
orbitally topologically equivalent. Let Ĥ : S2 → S2 be the corresponding homeomorphism.

Let V and W be two local one-parameter families that unfold v and w respectively:

V = {vε|ε ∈ (R, 0)}, v0 = v; W = {wδ|δ ∈ (R, 0)}, w0 = w.

Let Mε(M̃δ) be the LMF -graph of vε (respectively, wδ). We will find a germ of a homeo-
morphism h : (R, 0)→ (R, 0) such that the LMF -graphs Mε and M̃h(ε) will be isotopic on
S2. This will imply the weak equivalence of the families V and W .

6.2 The non-bifurcating subgraph

We will prove first weak equivalence of families V + and W+ that correspond to ε > 0 and
δ > 0. Let us first study the family of graphs Mε for the vector fields vε. We will determine
a subgraph Xε ⊂Mε that depends continuously on ε and thus does not bifurcate at all.

Roughly speaking, Xε is Mε with all the truncated separatrices that eventually form
sparkling saddle connections deleted.

Let us turn to a more detailed construction. Let U(ε) be the unstable separatrix of the
saddle L(ε) whose germ at L(ε) depends continuously on ε and belongs to the loop γ for
ε = 0.

Let Û(ε) be: the entire separatrix U(ε) if the latter forms a saddle connection; the
truncated separatrix U(ε) elsewhere. Let l̂k(ε) be the entire separatrix lk(ε) = U(ε) if the
latter forms a saddle connection; the truncated separatrix lk(ε) elsewhere. For ε > 0, let:

Xε = Mε \ Û(ε) \ ∪K1 l̂k(ε),

see Figure ??.

Proposition 1. The subgraph Xε depends continuously on ε for ε > 0 small.

Proof. We will treat separately different types of verteces and edges of the graph Xε.
Singular points of the vector fields vε are all hyperbolic and persist under small pertur-

bation. These are verteces of type 1. They depend continuously on ε. Limit cycles of the
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vector fields vε have the same property. They are edges of type 3, together with verteces
of type 3. They depend continuously on ε.

Transversal loops are the same for the vector fields vε, ε > 0. Indeed, they correspond
to hyperbolic objects that persist for all small ε. These loops may be chosen non-depending
on ε. Empty transversal loops are edges of type 5 with the verteces of type 4 on them.
They do not change with ε.

Arcs on the transversal loops and truncated separatrices of the hyperbolic saddles and
their truncation verteces are the only elements of Xε remained. Any separatrix of vε except
for U(ε) and lk(ε) has a hyperbolic limit set; another one is the corresponding saddle. The
first limit set persists as ε changes; its transversal loop remains the same. The truncation
vertex of the separatrix considered varies continuously on ε. The same holds for the arcs of
the transversal loops between the subsequent truncation vertexes. These are edges of type
2 and 4, and verteces of type 2. They depend continuously on ε.

Edges of type 1 are not mentioned in the proof above. Indeed, they are saddle connec-
tions, and do not belong to Xε.

This proves the proposition.

6.3 Parabolic arcs

Let us now describe the arcs on the transversal loops where the truncation verteces of Mε

occur. Let C be the transversal loop corresponding to the separatrix loop γ. A variety
of singular points and limit cycles of the vector field v0 may occur inside the loop γ; they
are accompanied by corresponding transversal loops. Non-empty loops are divided to arcs
by the truncation verteces of the separatrices of v0. The saddles of v0 are hyperbolic;
they persist under small perturbations; the transversal loops persist as well. Hence, the
truncation verteces of v0 generate continuous families of such verteces of vε.

Definition 16. An arc of a transversal loop of v0 between two subsequent truncation verteces
of v0 is called parabolic for v0 provided that there exists an orbit of v0 that connects this
arc with the transversal loop C.

The endpoints of the parabolic arc for v0 are truncations verteces of the separatrices of
v0; they generate two families of truncation verteces continuous in ε for the vector fields vε.

Definition 17. A parabolic arc for vε is an arc whose endpoints are truncation verteces
described above; it varies continuously with ε, and for ε = 0 is a parabolic arc of v0 in sense
of Definition ??.

Proposition 2. For any vector field v ∈ SL, the truncation arcs on the transversal loop C
corresponding to the separatrix loop γ are in one-to-one correspondence with the parabolic
arcs located inside γ.

Proof. Let ak, ak+1 be the endpoints of the truncation arc on C; denote this arc by αk. By
definition of the point ak, it belongs to a separatrix lk of the saddle Ik. The same holds
for ak+1, lk+1, Ik+1. Let us prove that any point a ∈ αk different from the endpoints has
the same ω-limit set. Indeed, the ω-limit set of a is not a saddle, or else a should belong
to A which is not the case. Hence, ω(a) is a hyperbolic attracting singular point or limit
cycle. This attractor has an open basin. Hence, the set of points of the arc αk with the
same ω-limit set is open. By the connectedness of the interval, all the points of αk except
for the endpoints have the same hyperbolic ω-limit set. Let C ′ be the transversal loop
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Figure 4: The Poincaré map on the parabolic arcs

corresponding to this limit set. Then any orbit emerging from int αk (the arc αk with the
endpoints deleted) crosses this loop. Hence, the Poincaré map

Pk : int αk → C ′

is well defined. Let
βk = Cl Pk( int αk). (3)

Then the endpoints of βk are the truncation verteces of certain unstable separatrices of
Ik, Ik+1 on C ′, see Figure ??. The arc βk is parabolic by definition.

The union of arcs αk equals to C. Hence, all the parabolic arcs have the form (??).
This proves the proposition.

Remark 2. The arc βk may coincide with the whole curve C ′, see Figure ?? b. As well,
the arc αk may coincide with the whole curve C. In this case K = 1, ak = ak+1 = a1, Ik =
Ik+1 = I1. Both these examples are particular cases in the proof of Proposition ??.

6.4 Equivalence of graphs Xε

Let πε : X0 → Xε, π0 = id be the map of the spherical graphs continuous in ε with the
following two properties:

1. πε is a homeomorphism as a map of subsets on the sphere;

2. πε is an equivalence of graphs, that is, maps verteces to verteces and edges to edges,
preserving the incidence, orientation and labels, see 6.9 for an explanation.

Let X̃0, X̃δ, π̃δ be the same objects for the familyW . Let us modify the homeomorphism
Ĥ so that it maps transversal loops of v to smooth transversal loops of w that belong to X̃0,
and respects the verteces of the graphs X0 and X̃0 chosen on the limit cycles and empty
transversal loops. Then Ĥ maps X0 to X̃0, and has the same two properties as πε. Then
the map:

Gεδ : Xε → X̃δ, Gεδ = π̃δ ◦ Ĥ ◦ π−1
ε (4)

has the same two properties as πε for any small ε > 0, δ > 0.

Remark 3. Note that the map Gεδ satisfies the star condition at any vertex of Xε. Indeed,
the map Ĥ meets this condition as a homeomorphism. The family πε is a homotopy of Xε

identical for ε = 0, same for π̃δ. Hence, Gεδ meets the star condition too.
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6.5 Homeomorphism of bases

Let now V = {vε} and W = {wδ} be two local SL families from Theorem ??. Let ε be
the separatrix splitting parameter for the family V , and δ be the analogous parameter for
W . We will define the map h of the bases of the families V and W for ε > 0, that maps
bifurcation diagram of V to that of W . This map is far from being unique.

Let v = v0, w = w0 be vector fields of class SL, and Ĥ : S2 → S2 be the homeomorphism
that links their phase portraits. Let γ,C,Γ, O, a, a1 . . . , aK , I1, . . . , IK be the objects for the
vector field v defined in Section ??. We will define the same objects for the vector field w.
Let γ̃ = Ĥ(γ) be the separatrix loop of w, and Õ = Ĥ(O). Let Ĩk = Ĥ(Ik) be the saddles
of w inside γ̃; their separatrices wind to γ̃ in the negative time. These separatrices cross
the clockwise oriented curve C̃ = Ĥ(C) at the points ãk = Ĥ(ak), k = 1, . . .K. Recall that
Γ is so chosen that a is located between aK and a1 on the oriented curve C. The point
Ĥ(a), a = Γ ∩ C, lies on Ĥ(C) between Ĥ(aK) and Ĥ(a1). Let us slightly change Ĥ in
a neighborhood of Ĥ(Γ) ∩ Ĥ(C) so that the new map, still denoted by Ĥ, links v and w
as before, but the curves Γ̃ = Ĥ(Γ) and C̃ = Ĥ(C) are smooth, and Γ̃ is transversal to C̃.
The points ã, and ãk, k = 1, ...,K follow on C̃ in the same order as the points a, ak follow
on C.

Let, as before, ∆ε be the Poincaré map for the separatrix loop of the vector field vε of the
family V . Let ∆̃δ be the Poincaré map for the separatrix loop of the vector field wδ of the
familyW . Consider now the solutions εn of the equation ∆n

ε (ε) = a, and solutions δn of the
following equation: ∆̃n

δ (δ) = ã. The first requirement for the map h : (R+, 0)→ (R+, 0) is:
h(εn) = δn. As explained in 5.2, solutions εkn of equation (??) follow on the semi-interval
[εn−1, εn) in the increasing order: k > k′ ⇒ εkn > εk′n. The same holds for the solutions
δkn of the connection equation for the family W located on the interval on [δn−1, δn). We
now set a homeomorphism h of semi intervals [0, εn0 ]→ [0, δn0 ] for some large n0 in such a
way that

h(εkn) = δkn. (5)

This completes the choice of the homeomorphism h of the bases of the families V and W .

6.6 Correspondence of the graphs

We will now define the map Gε : Mε → M̃h(ε). Define first the restiction Gε : Xε → X̃h(ε)
as

Gε = Gεδ, δ = h(ε),

where Gεδ is the same as in (??).
The graph Mε differs from Xε by the separatrices U(ε) and lk(ε). We will now define

the map Gε on these separatrices. This definition is illustrated by Figure ??.
Define Gε(U(ε)) = Ũ(h(ε)). Let us prove that this definition agrees with the construc-

tion of Gε on the other parts of the graph Mε.
Consider first the case: ε = εkn for some k, n. Then U(ε) has two verteces: L(ε) (as

ever); and Ik(ε). At the same time, h(ε) = δkn. Hence, Ũ(h(ε)) = Ũ(δkn) = Gε(lk(εkn)).
This agrees with the definition of Gε on Xε.

Consider now the case when no εkn coincides with ε. Let k, n be such that ε ∈
(εkn, εk+1n). Then U(ε) intersects C by the interior point of the arc αk(ε). By Propo-
sition ??, the truncation vertex of U(ε) belongs to the arc βk(ε). The arcs βk(ε) depend
continuously on ε, as well as β̃k(δ). We have:

Ĥ(βk(0)) = β̃k(0).
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Figure 5: Bifurcations of the sparkling saddle connections

The arcs βk(ε), β̃k(δ) are the edges of the graphs Xε, X̃δ. Hence,

Gε(βk(ε)) = β̃k(h(ε)).

As h(ε) ∈ (δkn, δk+1n), we conclude that Ũ(h(ε)) intersects C̃ by an interior point of the arc
α̃k. By Proposition ??, the truncation vertex of Ũ(h(ε)) belongs to β̃k(h(ε)). This vertex
splits β̃k(h(ε)) into two edges of M̃h(ε); the other verteces of these edges are the endpoints
of β̃k(h(ε)). Similarly, the truncation vertex C(ε) of U(ε) splits βk(ε) in two edges of Mε;
the other verteces of these edges are the endpoints of βk(ε). Hence, Gε is well defined on
U(ε) and two truncation arcs that contain its vertex.

Let us now extend Gε to the separatrix lk(ε). Let Gε(lk(ε)) = l̃k(h(ε)).
Consider first the case ε = εkn. Then lk(ε) is a saddle connection between L(ε) and

Ik(ε). At the same time, Gε(lk(ε)) = l̃k(δkn). Hence, Gε(lk(ε)) connects L̃(δkn) and Ĩk(δkn).
This agrees with the definition of Gε on Xε.

Suppose now that ε 6= εkn for all k, n. Take m and n so that εmn < ε < εm+1n. Then,
as before, a(ε) ∈ αm. Let S′(ε) be an ingoing separatrix of L different from S(ε). Let
α(S′(ε)) be its α-limit set, and C ′ be the corresponding truncation loop. For ε > 0, the
separatrix S(ε) has the same α-limit set as S′(ε), see Figure ??. Let b′(ε) and b0(ε) be
the truncation verteces of S′(ε) and S(ε) on C ′. Let C ′ be oriented as a boundary of the
domain that contains α(S′(ε)). Let β(ε) be the arc of the oriented curve C ′ from b′ to b0,
and intβ(ε) = β(ε) \ b′(ε) \ b0(ε). For ε > 0, a Poincaré map Pε : C \ a(ε) → intβ(ε)
along the orbits of vε is well defined. The images bj(ε) = Pε(aj(ε)) follow in the order
bm+1(ε), . . . , bkε), b1(ε), . . . , bm(ε) from b′ to b0.

At the same time, by construction of h, δmn < h(ε) < δm+1n. Then Ũ(ε) intersects
α̃m, and the truncation verteces of the separatrices l̃j(h(ε)) follow in the same order on
β̃ : b̃m+1(δ), . . . , b̃k(δ), b̃1(δ), . . . , b̃m(δ), δ = h(ε). This shows that the extension of Gε to
all the separatrices of vε is well defined.
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6.7 Checking the star condition

Let us now check the star condition for the map Gε. In all the verteces of Xε it is already
checked. All the singular points of the vector fields vε belong to Xε. It remains to check the
star condition in the truncation verteces of the separatrices U(ε) and lk(ε). These verteces
have index 3. Recall that the transversal loops are so oriented that the corresponding
singular points or limit cycles or the separatrix loop lie to the left of them. Hence, the
separatrices if any, come to these transversal loops from the right. So for any truncation
vertex the order of the edges in the counterclockwise direction is: incoming truncation arc,
outcoming truncation arc, the separatrix. This order is preserved by Gε.

6.8 Annuli faces lemma

Lemma 4. The homeomorphism Gε may be extended from the boundary of any annular
face of Mε to a homeomorphism of all this face to some annular face of M̃h(ε).

Proof. For ε > 0, the vector field vε has no separatrix loops; hence, the annular faces of its
LMF graph are of types 1, 2, 3 only, by Lemma ??. In case 3, both boundary components
of the annular face are transversal loops and they do not depend on ε. The map Gε on
them does not depend on ε as well, and coincides with Ĥ that is a homeomorphism of the
whole sphere. This proves the lemma in Case 3.

In cases 1 or 2, one boundary component is a transversal loop that does not depend on
ε, and the other one is the corresponding singular point or cycle πε(c) where c is a singular
point or cycle of the vector field v0. The image of this boundary under Gε is

π̃h(ε)(Ĥ(c)) ∪ C̃, C̃ = Ĥ(C).

The map that is π−1
ε on the singular point or cycle and identity on the transversal loop

mentioned above may be easily extended to a homeomorphism Fε of the annular face of
M0 to that of Mε. In the same way a homeomorphism of the corresponding annular faces
of the graphs M̃δ is defined. The homeomorphism F̃h(ε) ◦ Ĥ ◦ F−1

ε is the desired one. This
proves the lemma in Cases 1 and 2.

6.9 Preserving the labels

The map Gε for ε > 0 preserves the types of the verteces and edges of the LMF graph.
Hence, it preserves the labels.

The construction of the map Gε for ε > 0 is over. The star and annuli faces conditions
for this map hold. Hence, vector fields vε and wh(ε) are orbitally topologically equivalent for
ε > 0. The main part of the equivalence criterion is proved. Only the case ε ≤ 0 remains.

The fields v0 and w0 are orbitally topologically equivalent by assumption. Let us check
the same property for ε < 0.

6.10 Case ε < 0

Let now X0 = M0 \ γ. This subgraph changes continuously with ε for ε ≤ 0, that is,
generates a family of subgraphs Xε ⊂Mε continuous in ε. Let πε be the natural homotopy.
Let X̃0, X̃ε, π̃ε be the similar objects for the family W, ε ≤ 0. Let Gε on Xε be given by the
formula (??) again, with h(ε) = ε.

The difference Mε \Xε for ε < 0 constitutes of the following elements, see Figure ??:
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Figure 6: The bifurcating part of the LMF graph for the non-positive parameter

• the truncated separatrix U(ε);

• the limit cycle c(ε) with the vertex on it born from the separatrix loop γ;

• a new transversal loop C(ε) outside this cycle, with the truncation vertex of the
separatrix S(ε) on it;

• the truncated separatrix S(ε).

The map Gε on Mε for ε < 0 is defined as follows. On Xε it is defined by (??) with
h(ε) = ε. Let γ, c(ε), S(ε), U(ε) be the same as above, see Figure ??, γ̃, c̃(ε), S̃(ε), Ũ(ε) be
the similar objects for the family W . Let

Gε(c(ε)) = c̃(ε), Gε(S(ε) = S̃(ε);Gε(U(ε) = Ũ(ε).

At the verteces of these three edges, the star condition is fulfilled. For all the annular
faces of the graph Xε, the annuli faces condition holds because it holds for the homotopies
πε, π̃δ and because Ĥ is a homeomorphism. For two annular faces whose boundary contains
the new born limit cycle c(ε), this condition is obvious, see Figure ??.

The equivalence of the graphs Mε and M̃h(e) is proved, and star and annuli faces condi-
tions for it are checked. Hence, these graphs are isotopic on the sphere. Thus, the families
V and W are equivalent. This proves Theorem ??.
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