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Abstract

In this paper we prove that generic one-parameter families of vector fields on S2 in
the neighbourhood of the fields of classes AH,SN,HC, SC (Andronov-Hopf, saddle-
node, homoclinic curve, saddle connection) are structurally stable. We provide the
classification of bifurcations in these families.
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1 Introduction
This paper is a part of a large program suggested in [I] and [IKS]. Classical bifurcation the-
ory in the plane may be split in two parts: local bifurcations (that occur near a degenerate
singular point) and semilocal ones (oftenly called nonlocal) that occur near polycycles and
non-hyperbolic cycles. Recently a third part of the theory was developed: global bifurca-
tions on the sphere. Its striking difference with the two previous parts occurs because of
sparkling saddle connections discovered in [MP].

Semilocal bifurcation theory in the plane has important applications to the Hilbert 16th
problem, see the founding paper [DRR] and future publications on the subject. The global
theory is too young as to have such applications; yet they may be expected in the future.

Two of the most important problems of the new theory are:

• Classify the global bifurcations that occur in few (one, two, three) parameter families.

• Study the structural stability of these families.

This paper completes the solution of both problems for generic one-parameter families
of vector fields in the two-sphere (families for brevity in what follows). Two previous papers
on the subject are [IS] and [GIS]. The first result of the three papers is:

Theorem 1. Generic one parameter families are structurally stable.

The second one is the classification of the bifurcations in such families.
Note that despite the conjecture of Arnold [AAIS], not all generic finite parameter fam-

ilies are structurally stable: counterexamples for three parameter families were discovered
[IKS].

The investigation of global bifurcations on the two-sphere was initialed by Sotomayor
[S]. He described all the degeneracies that may occur in generic one-parameter families; the
corresponding vector fields are called quasigeneric. Sotomayor also proved that quasigeneric
vector fields are structurally stable in the class of all quasigeneric vector fields. But he did
not investigate their bifurcations.
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There are six classes of quasigeneric vector fields, see the basic list below. One of them
consists of vector fields with a separatrix loop, another one of fields with a parabolic cycle.
The unfoldings of the fields of the first class are investigated in [IS], of the second in [GIS].
Here we investigate bifurcations in the remaining four classes. These bifurcations are called
“tame” because the bifurcation diagram for these families consists of one point, and no
sparkling saddle connections occur.

The second main result of this paper is the following (see Theorem 6 below for the
precise statement):

Unfolding of two quasigeneric vector fields of the four classes considered are equivalent
if and only if two quasigeneric fields perturbed are orbitally topologically equivalent.

This is sort of a classification result.
Let us pass to the detailed presentation.

1.1 Preliminaries.

Below we provide some definitions that are necessary for our work. They are classical; we
borrow them from [IS].

All the vector fields and families of vector fields that we consider are of the class C∞.

Definition 1. Two vector fields v and w on S2 are called orbitally topologically equivalent,
if there exists a homeomorphism S2 → S2 that links the phase portraits of v and w, that is,
sends orbits of v to orbits of w and preserves their time orientation.

Definition 2. Let B, B0 be topological balls in R. Two families of vector fields {vα, α ∈ B},
{wβ, β ∈ B0} on S2 are called weakly topologically equivalent if there exists a map

H : B × S2 → B0 × S2, H(α, x) = (h(α), Hα(x))

such that h is a homeomorphism, and for each α ∈ B the map Hα : S2 → S2 is a homeo-
morphism that links the phase portraits of vα and wh(α).

Definition 3. A vector field is called structurally stable if it is orbitally topologically
equivalent to any nearby vector field. A family of vector fields is called weakly structurally
stable if it is weakly topologically equivalent to any nearby family.

In what follows, we mainly deal with local families.

Definition 4. A local family at α = 0 with the base (R1, 0) is a germ on {0} × S2 of a
family given on B× S2, B 3 0, B ⊂ R is open. Two local families are weakly topologically
equivalent if they have locally weakly topologically equivalent representatives, and the corre-
sponding homeomorphism of the bases maps 0 to 0. A local family of vector fields is called
weakly structurally stable if it is weakly topologically equivalent to any nearby local family.

1.2 Structural stability of vector fields

Before considering families of vector fields let us provide the classical results related to the
structural stability of vector fields.

Definition 5. A vector field on the sphere is called a Morse-Smale system if it satisfies
two following conditions:

1. all its singular points and limit cycles are hyperbolic;
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2. it has no saddle separatrices.

In 1937 A. Andronov and L. Pontryagin derived the following criterion of structural
stability of vector fields on the sphere:

Theorem 2. A C1 vector field on the sphere is structurally stable if and only if it is a
Morse-Smale system.

More general result is true if we define Morse-Smale systems on arbitrary C1 manifolds.
A vector field v on a C1 manifold is a Morse-Smale system if it satisfies the condition 1
from the definition 5 and two additional conditions:

2’ the set of non-wandering points of v consists of a finite number of singular points and
limit cycles;

3’ stable and unstable manifolds of singular points and limit cycles of v intersect each other
transversally.

In 1971 M. Peixoto proved that the statement of the theorem 2 is true for vector fields
on compact two-dimensional C1 manifolds.

Remark 1. Vector fields on the sphere that satisfy conditions 1 and 2 also satisfy conditions
1, 2’ and 3’. However, it is already not true for vector fields on the torus: an irrational
flow is not a Morse-Smale system.

1.3 Basic list

Let us remind the list of degeneracies that can be met in an unavoidable way in generic
one-parameter family:

1. AH: a non-hyperbolic singular point with a pair of non-zero pure imaginary eigen-
values;

2. SN : a saddle-node singular point;

3. HC: a homoclinic curve of a saddle-node;

4. SC: a saddle connection between two different hyperbolic saddles;

5. SL: a loop of a hyperbolic saddle;

6. PC: a parabolic cycle, that is, a non-hyperbolic limit cycle.
For future references, this list of degeneracies will be called a basic list.

Definition 6. A vector field is called quasi-generic if it has exactly one degeneracy of the
type AH,SN,HC, SC, SL or PC, and satisfies the following genericity assumptions:

1. all the other singular points and limit cycles are hyperbolic;

2. for the non-hyperbolic singular point of the vector field with a degeneracy of the type
AH, the third derivative at 0 of the corresponding normalized Poincaré map is non-
zero;
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3. the non-hyperbolic singular point of a vector field with a degeneracy of the type SN
or HC is of the multiplicity two;

4. the homoclinic curve of a vector with a degeneracy of the type HC is not a separatrix
loop;

5. the characteristic value of a saddle with a separatrix loop for a vector with a degeneracy
of the type SL is not equal 1;

6. for a vector field with a degeneracy of the type PC, the second derivative of the
Poincaré map of the parabolic limit cycle is nonzero.

In our work we will consider the first four degeneracies from the list.
We say a vector field v is of class AH (SN,HC, SC correspondingly) if v is a quasi-

generic vector field with a degeneracy 1 (2, 3, 4 respectively) from the basic list.
In [S] it is proved that Ck vector fields of class AH (SN,HC, SC) form a Banach

submanifold of codimension one in the space Vectk(S2) of Ck-vector fields on S2 for k ≥
3, in particular it is true for C∞ vector fields. These submanifolds will be denoted by
AH,SN,HC, SC respectively. In what follows, we will consider local families that cross
this submanifolds and are transversal to them. The transversality will be used in the
description of the corresponding local and semilocal bifurcations.

Local bifurcations are those that occur in a neighbourhood of a singular point; semilocal
ones occur in a neighbourhood of saddle connections or separatrix polygones. Local and
semilocal bifurcations in the classes AH,SN,HC, SC are studied long ago and described
in many sourses; see [AAIS] for the description and references. Global bifurcations in the
classes AH and SC are reduced to the local and semilocal ones; those in the classes SN
and HC are not. The difference is due to separatrices of hyperbolic saddles that enter the
parabolic sector of the saddle-node singular point, see Fig.1 below.

1.4 Structural stability

“Global” structural stability theorem follows (we skip the details) from the following “local”
structural stability theorem.

Theorem 3. Generic local one-parameter family is structurally stable.

This theorem is non-trivial only in case when the family is an unfolding of one of the
degeneracies from the basic list; in other words when the vector field is of one of the classes
AH, SN, HC, SC, SL, PC. For the last two classes Theorem 3 is proved.

Theorem 4. ([IS], [GIS]) Generic unfoldings of vector fields of classes SL and PC are
structurally stable.

In this paper we prove

Theorem 5. Generic unfoldings of vector fields of classes AH,SN,HC, SC are structurally
stable.

Families of these classes are called tame, because their bifurcation diagrams consist of
one point in contrast to those of the families SL and PC.
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1.5 Equivalence criterion

Theorem 6. Two generic local families of classes AH,SN,HC, SC are weakly equivalent
iff the corresponding quasigeneric vector fields are orbitally topologically equivalent.

Analogous theorem is proved for local families of class SL [IS]. For local families of class
PC analogous theorem is wrong. In this case a class of a phase portrait modulo topological
orbital equivalence does not determine uniquely a bifurcation scenario, the latter depends
on the "order" in which sparkling saddle connections appear after separation of the parabolic
cycle, see details in [GIS].

The main part of the paper contains the proof of Theorem 6. Theorem 5 easily follows
from this one, see Section 5 below.

2 LMF graphs
Here we reproduce some definitions and results from [IS]; this is necessary to make the
paper independent.

2.1 The construction

The LMF (Leontovich-Mayer-Fedorov) graph is a modified union of singular points, sep-
aratrices and limit cycles of a vector field. We will define it for the vector fields that are
perturbations of quasigeneric vector fields of classes AH,SN,HC, SC only. These vector
fields have all the singular points hyperbolic, except for at most one; all the limit cycles
hyperbolic; no polycycles at all. All the separatrices of such fields are saddle separatrices or
phase curves that include the boundaries of hyperbolic sectors of the saddle-node. For any
vector field v of this set, we will construct a spherical graph that is a complete topological
invariant for this vector field. Let us surround any attracting or repelling singular point of
v by small closed curve transversal to v; it will be called a transversal loop. Let us do the
same for any limit cycle of v (two closed curves from each side). Recall that these limit
cycles are hyperbolic. Every unstable separatrix that enters the transversal loop in the
positive time is truncated, that is, replaced by its arc between the singular point and its in-
tersection with the loop; this intersection point is called a truncation vertex. An analogous
truncation is done for stable separatrices. A transversal loop that contains no truncation
vertices is called empty.

We suppose that the sphere is oriented. We orient all the transversal loops in such a
way that the corresponding singular point or cycle is to the left of them.

Definition 7. [IS] LMF-graph of a vector field v, denoted by LMF (v), is an oriented graph
embedded in S2 consisting of the following elements:

• Vertices:

1. All the singular points of v;
2. All the truncation vertices of the separatrices of v;
3. An arbitrary chosen point on each limit cycle;
4. An arbitrary chosen point on each "empty" transversal loop.

• Edges:
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1. Unstable (stable) separatrices of singular points, if such a separatrix doesn’t in-
tersect any curve without contact. The orientation on all the orbits if v is induced
by the time parametrization;

2. Truncated separatrices;
3. Limit cycles with the chosen vertices on them;
4. Truncation arcs, that is, arcs of the oriented transversal loops between subsequent

truncation vertices;
5. Empty transversal loops with the chosen vertices on them.

Labelling: Each vertex which is a singular point is labelled by the type of this singular
point - attractor, repellor, saddle or saddle-node. Other vertices are labelled to show if they
are points on limit cycles or on transversal loops. Each edge is labelled depending whether
it is a stable or unstable (truncated) separatrix, or a truncation arc. For arcs of transversal
loops, we put labels showing if this loop is absorbing (this loop corresponds to the ω-limit
set of its points) or outgoing.

2.2 Faces of LMF -graphs

Theorem 7. All the faces of LMF -graph of a vector field of the type AH,SN,HC and
SC or their small perturbations are topological disks or annuli. All the annuli-faces that
appear in the graph have as the boundaries:

• a singular point and its transversal loop;

• a limit cycle and one of its transversal loops;

• two "empty" transversal loops.

This statement follows from a theorem proved in [GI*].

Theorem 8. For vector fields with a finite number of singular points and limit cycles
counted with multiplicity, the previous theorem holds with the only difference: an annuli
shaped face of an LMF graph may have a monodromic polycycle and its transversal loop as
a boundary.

The vector fields of classes AH,SN,HC, SC and their small perturbations have no
polycycles; so Theorem 7 follows from Theorem 8.

2.3 LMF -graphs as invariants of orbital topological equivalence.

Theorem 9 (R. Fedorov, [F]). If two LMF graphs Γ1 = LMF (v), Γ2 = LMF (w) of
two vector fields v, w are isotopic on the sphere (i.e. there exists an orientation-preserving
homeomorphism of the sphere which maps one to another, preserves orientation on edges
and matches labels on edges and vertices), then v and w are orbitally topologically equivalent.

2.4 Isotopy of spherical graphs.

Theorem 10 (Adkisson-McLane theorem, [MA]). Images of two embeddings of the same
connected graph on a sphere S2 are isotopic iff the corresponding isomorphism of images
preserves the counterclockwise order of the edges at each vertex.
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We will call the requirement of this theorem the star condition (S condition for brevity).
As it was mentioned above, the faces of LMF -graphs of vector fields of types

AH,SN,HC and SC and their perturbations are topological disks or annuli. We provide
a convenient criterion for isotopy of these graphs which is a generalization of the theorem
above.

Theorem 11. Suppose that two oriented planar graphs Γ1,Γ2 are embedded in S2 by maps
ϕ1 : Γ1 → S2, ϕ2 : Γ2 → S2, and the (open) faces of the embedded graphs are topological
discs or annuli. Choose an orientation in S2. Suppose that these graphs are isomorphic as
oriented graphs, and the isomorphism, denote it by g, satisfies the star condition. Suppose
that the map ϕ2 ◦ g ◦ ϕ−1

1 extends to an orientation-preserving homeomorphim of all the
annuli-shaped faces of the graph Γ1. Then the map ϕ2 ◦ g ◦ ϕ−1

1 can be extended to the
orientation-preserving homeomorphism of S2, so ϕ1(Γ1) is isotopic to ϕ2(Γ2).

A simple proof of this fact is given in [GI*]. We will call the requirement of this theorem
the annuli faces condition (A condition for brevity)

Corrolary 1. If a family of spherical graphs (which are embeddings of the same abstract
planar graph) depends continuously on a parameter then these graphs are pairwise isotopic
on the sphere.

Proof. Both S and A conditions persist under the homotopy of the graphs.

3 Proof of the structural stability cryterion: description of
the LMF graphs

In this and the next section we prove Theorem 6.

3.1 Idea of the proof

Consider two generic one-parameter local families V = {vε|ε ∈ (R, 0)} and W = {wδ|δ ∈
(R, 0)} with equivalent vector fields v0 and w0 that belong to classes AH,SN,HC, SC. Let
Mε and M̃δ be the LMF graphs of the vector fields vε and wδ. Let Ĥ be a homeomorphism
that links v0 and w0 (see def. 1). Without loss of generality we can assume it to preserve
the orientation on the sphere. We will prove that, after a suitable reparametrization, the
graphs Mε and M̃ε are isotopic on S2. This will imply that the vector fields vε and wε are
equivalent; thus, the families V and W are weakly equivalent.

We will prove that the graph Mε depends continuously on ε for ε < 0 and ε > 0
separately. To do that we will represent the graph Mε as a union of two:

Mε = Nε ∪Xε.

The graph Xε will depend continuously on ε in the whole neighbourhood of zero; the
graph Nε will be uniquely determined by the subgraph N0, and continuous in ε for ε 6= 0.
We should think of the graph Nε as a bifurcating part of Mε and consider the graph Xε as
a non-bifurcating one. The graph M̃ε may be represented in a similar way. Then we will
prove that the graphs Mε and M̃ε are isotopic.
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Figure 1: Subgraphs N0 for vector fields of classes AH,SN,HC, SC

3.2 Subgraph N0

We describe the bifurcating parts of the LMF graphs of the qusasigeneric vector fields under
consideration.

Class AH.
The graph N0 consists of one non-hyperbolic singular point P , see Figure 1a.
Class SN .
Let P be a saddle-node of v0; let γ1

s , γ
2
s , γu be its two stable and one unstable separatri-

ces. We choose γ1
s to be the first ingoing separatrix if we encircle P in a counterclockwise

direction starting from γu, see Figure 1b.
We will denote by ω(γ) (α(γ) respectively) the ω-limit (α-limit) set of an arbitrary

trajectory γ.
By the Poincare-Bendixson theorem and no saddle connections assumption, α(γis), i =

1, 2 are hyperbolic repellers, ω(γu) is a hyperbolic attractor (a point or a cycle). Denote
by li, i = 1, 2, 3 the corresponding transversal loops (l3 for ω(γu)). Let Ai ∈ li be the
truncation vertices of the separatrices γ1

s , γ
2
s , γu respectively. The curve li is crossed by at

least one separatrix of a hyperbolic saddle of v0; let us prove it for i = 3. In the opposite
case the Poincaré map l3 → l1 would be defined on the whole of l3, which is impossible.
The same argument holds for i = 1, 2. If there is only one such vertex, denote it by Bi. If
they are more than one, let Bi, Ci be the closest to Ai vertices of li; these vertices follow
on the oriented curve li in the order Bi, Ai, Ci. We will use these notation even when Bi is
unique, just considering that Bi and Ci coincide.

Let sj , j= 1, . . . , n be the hyperbolic saddles whose separatrices γj enter the parabolic
sector of P .

The elements of N0 are:

• Vertices: P ; Ai, Bi, Ci, i = 1, 2, 3; sj , j= 1, . . . , n;
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• Edges: arcs AiBi, AiCi, i=1, 2, 3; truncated separatrices γ1
s , γ

2
s , γu, complete separa-

trices γj , j=1, . . . , n.

Class HC.
The graph N0 in this case is constructed by the slight modification of the previous one,

see Fig.1c. The truncated separatrices γis, the transversal loops l1, l2 and the truncation
vertices Ai, Bi, Ci are the same as before. But now there may be no extra truncation vertices
on li except for Ai, in this case we consider that Bi = Ai = Ci and the arcs AiBi, AiCi
coincide with li. The unstable separatrix of P is now the homoclinic loop: ω(γu) = P . The
saddles sj and their separatrices γj are defined as before.

Then N0 consists of:

• Vertices: P ; Ai, Bi, Ci, i = 1, 2; sj , j = 1, . . . , n;

• Edges: arcs AiBi, AiCi, i = 1, 2; (truncated) separatrices γs1 , γs2 , γu, complete sepa-
ratrices γj , j=1, . . . , n.

Class SC.
Let γ0 be a saddle connection between two saddles s1, s2 of v0. We can assume that γ0

is an unstable separatrix of s1. Let γ1, γ2(γ3, γ4) be the stable separatrices of s1 (unstable
separatrices of s2) that bound the same hyperbolic sectors as γ0, see Fig.1d. Let li be a
transversal loop around α(γ1), α(γ2), ω(γ3), ω(γ4), i = 1, ..., 4. Let Bj be the truncation
vertices on lj different from Aj (if exist); B1 and B2 are chosen in such a way that the
points on the arcs A1B1 and A2B2 close to A1 and A2 are connected by orbits passing
through the hyperbolic sectors of s1 and s2; same for B3 and B4. If such a point Bj does
not exist, we set Bj = Aj , and the arc AjBj is the whole curve lj .

The graph N0:

• Vertices: Ai, Bi, i = 1, . . . , 4, s1, s2;

• Edges: arcs AiBi; γi, i = 1, . . . , 4; γ0.

3.3 Persistent subgraph Xε.

In this section we construct a part of the graph Mε that does not bifurcate. Let X0 =
M0 \N0.

Proposition 1. The graph Mε for any small ε contains a subgraph Xε that depends con-
tinuously on ε and coincides with X0 for ε = 0.

Proof. For a vector field v0 let P be some non degenerate singular point of v0 and c be
some hyperbolic limit cycle of v0. Then, by the implicit function theorem, there exists a
map (R, 0) → R2, ε 7→ Pε such that Pε is a singular point of vε, and P0 = P . Similarly
there exists a smooth family of hyperbolic limit cycles cε of the vector fields vε such that
c0 = c.

Let πε be a map that brings all non degenerate singular points and all (hyperbolic) limit
cycles of vε to those of v0 defined as πε(Pε) = P0, πε(cε) = c0, such that πε preserves the
time orientation of the limit cycles.

Note that if P is an attractor or repeller of v0 then the transversal loop l for P and v0
is at the same time a transversal loop for Pε and vε. The same holds for transversal loops
l+, l− for the cycle c. Hence the transversal loops in Xε do not depend on ε at all.
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Note that in the class AH the non-hyperbolic singular point P is degenerate, and thus
included in the previous construction. Its transversal loop l is not included in N0 (while P
is); thus l ⊂ Xε.

By construction vertices of X0 are:

• (all the) hyperbolic singular points of v0;

• truncation vertices of separatrices of the hyperbolic saddles;

• (all the) vertices on the limite cycles of v0(these cycles are all hyperbolic);

• (all the) vertices on the empty transversal loops.

Edges of X0 are:

• truncated separatrices of hyperbolic saddles;

• arcs on the transversal loops formed by truncation vertices of separatrices of the
hyperbolic saddles;

• (all the) limit cycles;

• (all the) empty transversal loops.

Let now P0 be a hyperbolic saddle of v0, γ0 be a separatrix of P0 that belongs to X0,
hence, not to N0. Then γ0 has a hyperbolic limit cycle or a non degenerate singular point
as an ω-limit set if γ0 is unstable, or as an α-limit set if γ0 is a stable separatrix. Hence,
γ0 intersects a transversal loop l of this limit set.

There exists a family of germs of separatrices (γε, Pε) of vector fields vε continuously
depending on ε such that (γ0, P0) is a germ of γ0 at P0. By the implicit function theorem,
the separatrices γε intersect the loop l at the points a(ε) that depend smoothly on ε. These
points are truncation vertices of the separatrices γε. Extend the maps πε to the separatrices
and their truncated vertices:

πε(aε) = a0 = γ0 ∩ l; πε(γtε) = γt0,

where γtε and γt0 are truncated separatrices γ0 and γε, that is, the arcs of these separatrices
between the saddle and the truncation vertex.

Define the map πε on the transversal loops in such a way that it brings the transversal
loop into itself and the truncation vertices on it corresponding to the vector field vε to those
corresponding to v0.

Now the homeomorphism πε is defined on the whole of Xε, and the map π−1
ε : X0 → Xε

is the required homotopy.

3.4 Bifurcating subgraph Nε

In this section we will describe the bifurcating part Nε of the LMF-graph Mε in each of
the classes considered. We will prove that these subgraphs depend continuously on ε in a
punctured neighbourhood of zero and are completely determined by the graph N0.

Class AH.
Suppose that the nonhyperbolic singular point P of the vector field v0 is Lyapunov stable

(this may be achieved by the time reversal). The local bifurcation near P is described as
follows.

After a suitable reparametrization (see [S]),
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Figure 2: Subgraphs Nε for vector fields of classes AH,SN,HC, SC

• for ε < 0, the vector field vε has an attracting hyperbolic fixed point Pε;

• for ε > 0, the vector field vε has a repelling focus Pε surrounded by an attracting
limit cycle cε.

For all positive ε close to 0 the singular point Pε is surrounded by an absorbing transver-
sal loop l that has this property for all the vector fields vε and does not depend on ε. For
ε ≤ 0 this transversal loop corresponds to the stable focus Pε; for ε > 0, it is an outer
transversal loop of the limit cycle cε.

For ε > 0, by definition, Mε contains a transversal loop l1, that corresponds to Pε, and
l2, an interior transversal loop of cε.

Hence, the graph Nε has the following elements, see Fig.2a:

for ε < 0: vertices: Pε;
edges: none;

for ε > 0: vertices: Pε, one vertex on the limit cycle cε; one vertex on each of the empty
closed curves l1 and l2;

edges: cε; l1, l2.

This completes the description of the subgraph Nε for the class AH.
Class SN.
The local bifurcation in a neighbourhood of the saddle-node P is the following:

• for ε < 0, P is split in two singular points, a node Fε and a saddle Sε. Recall that P has
three separatrices met in the following order when P is surrounded in a counterclock-
wise direction: γu, γ1

s , γ
2
s . The saddle Sε has four separatrices γ1

u(ε), γ1
s (ε), γ2

u(ε), γ2
s (ε)

that are met in this order under a counterclockwise circuit of Sε. The germs (γ1
u(ε),

Sε), (γis(ε), Sε) tend to (γu, P ), (γis, P ) as ε → 0, i = 1, 2; the germ (γ2
u(ε), Sε)

shrinks to P as ε→ 0.
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Figure 3: "Baobab" shape and the orientation on Γ−

• For ε > 0, P vanishes. Moreover, for any cross-section Γ− transversal to the orbits
of v0 in a parabolic sector of P , and any cross-section Γ+ transversal to the orbits
of v0 and intersecting γu there exists a Poincaré map ∆ε : Γ− → Γ+. For any
neighbourhood U of O = Γ+ ∩ γu, U ⊂ Γ+, and for any sufficiently small ε, we have
∆ε(Γ−) ⊂ U .

Let us pass to the description of the graph Nε.
For ε ≤ 0 a transversal loop lFε around Fε should be chosen; it shrinks to P as ε→ 0.
Consider now the deformations of the separatrices of hyperbolic saddles sj that enter the

parabolic sector of P . Suppose that such separatrices exist. They may form a complicated
"baobab shaped" figure, see Fig.3. To put it in order, let us choose a cross-section Γ−
mentioned above such that all the separatrices of the saddles of v0 that enter P cross Γ−.
Let us take a point a ∈ Γ− and orient Γ− by a tangent vector ζ ∈ TaΓ− in such a way that
vectors v0(a) and ζ form a negatively oriented basis (Γ− is oriented "upward") see Fig.3.
Let us enumerate the intersection points of the separatrices that enter P with Γ− from up
to down: E1, . . . , En. Let us enumerate the corresponding separatrices and saddles in the
same way: γ1, . . . , γn; s1, . . . , sn; γi 3 Ej , γj 3 sj . Two separatrices of the same saddle may
intersect Γ− say, at Ek and El; in this case this saddle is enumerated twice, and we have:
sk = sl.

For ε < 0, all the orbits of vε come from Γ− to lFε ; denote by ∆ε the Poincaré map
from Γ− to lFε along the orbits of vε.

Let sj(ε) and (γj(ε), sj(ε)) be the saddles and the germs of the separatrices of vε,
ε ∈ (R, 0), that depend continuously on ε and coincide with sj and (γj , sj) for ε = 0.

Let Ej(ε) be the intersection points of γj(ε) with Γ−.
Let Dj(ε) := ∆ε(Ej(ε)) ∈ lFε . The order of the points Dj(ε) on the circle lFε oriented

counterclockwise is the same as for the points Ej on Γ−.
Let A0(ε) be the truncation vertex of γ2

u(ε) on lFε . By the Shoshitashvili reduction
principle, the truncation vertices on lFε are met in the order A0(ε), D1(ε), . . . , Dn(ε), see
Fig.2b.

For ε < 0, the graph Nε consists of the following elements:

vertices: sj(ε), Dj(ε), Fε, Sε, A0(ε), Ai(ε) (truncation vertices of γis(ε), γ1
u(ε) on li, Ai(0) :=

Ai), i = 1, 2, 3; Bi(ε), Ci(ε) (truncation vertices on li continuous in ε, Bi(0) :=
Bi, Ci(0) := Ci), i = 1, 2, 3;

edges: arcs on transversal loops: (Bi(ε), Ai(ε)), (Ai(ε), Ci(ε)) on li, i = 1, 2, 3;
(A0(ε), D1(ε)), (D1(ε), D2(ε)), . . . , (Dn−1(ε), Dn(ε)), (Dn(ε), A0(ε)) on lFε ; truncated
separatrices: (sj(ε), Dj(ε)), j = 1, . . . , n; (Sε, Ai(ε)), i = 0, 1, 2, 3.
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Let us define Nε for ε > 0.
The points sj(ε), Ej(ε), j = 1, . . . , n,Bi(ε), Ci(ε), i = 1, 2, 3 depend continuously on ε

in (R, 0). Recall that for ε > 0 the Poincaré map ∆ε : Γ− → l3 is well defined. The image
of ∆ε is close to A3 for positive ε small enough. Let Dj(ε) := ∆ε(Ej(ε)) ∈ l3.

The graph Nε for ε > 0 is the following:

vertices: sj(ε), Dj(ε), j = 1, . . . , n, Bi, Ci, i = 1, 2, 3;

edges: (sj(ε), Dj(ε)), j = 1, . . . , n, (Bi(ε), Ci(ε)), i = 1, 2; (B3(ε), D1(ε)),
(D1(ε), D2(ε)), . . . , (Dn−1(ε), Dn(ε)), (Dn(ε), C3(ε)).

This completes the description of the bifurcating subgraph Nε of the vector field vε in
the class SN.

Class HC.
The semilocal bifurcation occurs in a neighbourhood of the homoclinic loop of the

saddle-node in the following way:

for ε < 0, if we hold the same notations as for SN, then the only difference with the
previous case is: the deformation γ1

u(ε) of the outgoing separatrix γu of P tends to
the node Fε as t → ∞. We note by A3(ε) the corresponding truncation point on
lFε . Recall that A0(ε) is the truncation vertex of γ2

u(ε) on lFε . Then A3(ε) and A0(ε)
divide lFε in two parts. The truncation vertices Dj(ε) on one of them correspond to
the saddles sj outside the homoclinic loop γu, the truncation vertices on the other
part - to the saddles sj inside γu. To define the notions "outside" and "inside" the
loop γu, we consider γ1

s as the external separatrix of P with regard to γu.

For ε > 0, P vanishes and in a neighbourhood of γu a limit cycle cε occurs. Let us note
its external and internal transversal loops by l+ and l− respectively. The external
objects qre defined in the following way The deformations of separatrices tending to
P tend to the limit cycle cε. The deformed separatrices of external saddles intersect
l+, the separatrices of internal saddles intersect l−.

Let us take a cross-section Γ− as for SN. We can assume that Γ− intersects γu, denote
the point of intersection K3.

We enumerate the saddle separatrices coming to P , the corresponding saddles and
truncation vertices as for the class SN , see Fig.2c.

There exists k, 0 ≤ k ≤ n such that the saddles s1, . . . , sk are outside γu, the saddles
sk+1, . . . , sn are inside it. It means that the order of points on Γ− from up to down is
E1, . . . , Ek,K3, Ek+1, . . . , En, see Fig. 4

Let us consider ε < 0.
Let us note K3(ε) the point of intersection of γ1

u(ε) with Γ−, K3(0) := K3.
Let A3(ε) := ∆ε(K3(ε)), where ∆ε : Γ− → lFε the Poincaré map along the orbits of vε.
Analogically to the case SN , the order of points on lFε for ε < 0 in a counterclockwise

direction will be A0(ε), D1(ε), . . . , Dk(ε), A3(ε), Dk+1(ε), . . . , Dn(ε).
Now we define Nε for ε < 0:

vertices: sj(ε), Dj(ε), Fε, Sε, A0(ε), Ai(ε) (Ai(0) := Ai), i = 1, 2, 3; Bi(ε), Ci(ε) (trunca-
tion vertices on li continuous in ε, Bi(0) := Bi, Ci(0) := Ci), i = 1, 2;
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Figure 4: v0: the order of intersection points of separatrices with Γ− in case HC

edges: arcs on transversal loops: (Bi(ε), Ai(ε)), (Ai(ε), Ci(ε)) on l±, i = 1, 2;
(A0(ε), D1(ε)), (D1(ε), D2(ε)), . . . , (Dk(ε), A3(ε)), . . . , (Dn(ε), A0(ε)) on lFε ;
truncated separatrices: (sj(ε), Dj(ε)), j = 1, . . . , n; (Sε, Ai(ε)), i = 0, 1, 2, 3.

For ε > 0, let K3(ε) be the intersection point of cε with Γ−.
Then the order of points on Γ− is the following:

E1(ε), . . . , Ek(ε),K3(ε), Ek+1(ε), . . . , En(ε).
Let us take U ⊂ Γ− an open subset containing E1(ε), . . . , Ek(ε). If ε is small enough

then U can be chosen so that the Poincaré map ∆ε,ext : U → l+ is well defined. For some
neighbourhood V ⊂ Γ− of Ek+1, . . . , En the Poincaré map ∆ε,int : V → l− is also well
defined. Thus the map ∆ (we skip the indication on its dependence on ε): U ∪V → l+∪ l−
is well defined.

Let Dj(ε) := ∆(Ej(ε)) ∈ l+ ∪ l−. The order of points D1(ε), . . . , Dk(ε) on l+ is the
same as the order of E1, . . . , Ek on Γ− over K3. The order of points Dk+1(ε), . . . , Dn(ε) on
l− is the same as the order of Ek+1, . . . , En on Γ− under K3.

Let us construct Nε for ε > 0:

vertices: sj(ε), Dj(ε), j = 1, . . . , n, Bi, Ci, i = 1, 2; one vertex on the cycle cε; one vertex
on l± if this transversal loop is empty;

edges: cycle cε;
truncated separatrices: (sj(ε), Dj(ε)), j = 1, . . . , n;
arcs on transversal loops: (Bi(ε), Ci(ε)), i = 1, 2; (D1(ε), D2(ε)), . . . , (Dk(ε), D1(ε));
(Dk+1(ε), Dk+2(ε)), . . . , (Dn(ε), Dk+1(ε)).

This completes the description of the bifurcating subgraph Nε of the vector field vε in
the class HC.

SC.
The bifurcation in the neighbourhood of the saddle connection is the following: the

separatrix connection γ0 vanishes, and two new separatrices γ1
0(ε) of s1(ε) and γ2

0(ε) of
s2(ε) appear. In our case γ1

0(ε) is unstable and γ2
0(ε) is a stable separatrix.

The saddles si, i = 1, 2 are the vertices of X0, hence their deformations are already
defined. The deformations of their separatrices contained in X0 are also defined. Let us
define γ1(ε), γ2(ε) the separatrices of s1(ε) such that (γ1(ε), s1(ε)) and (γ2(ε), s1(ε)) are the
germs of (γ1, s1) and (γ2, s1) respectively. In the same way we define γ3(ε) and γ4(ε).

The deformations of points Ai, Bi, i = 1, 2, 3, 4, are already defined too.
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• for ε < 0, the ω-limit set of γ1
0(ε) is ω(γ4(ε)), the α-limit set of γ2

0(ε) is α(γ1(ε)), see
Fig.2d.

• for ε > 0, the ω-limit set of γ1
0(ε) is ω(γ3(ε)), the α-limit set of γ2

0(ε) is α(γ2(ε)).

Denote by D1(ε), D2(ε) the truncation vertices of γ1
0(ε), γ2

0(ε) respectively.
For ε < 0 D1(ε) is at the arc (A4(ε), B4(ε)) arbitrarily close to A4(ε). D2(ε) lies on the

arc (A1(ε), B1(ε)) arbitrarily close to A1(ε).
We obtain the similar description for ε > 0 changing the indexes of transversal loops.
Now we construct Nε:
For ε < 0:

vertices: si(ε), Di(ε), i = 1, 2; Aj(ε), Bj(ε), j = 1, 2, 3, 4;

edges: truncated separatrices: (si(ε), Di(ε)), i = 1, 2, (s1(ε), A1(ε)), (s1(ε), A2(ε)),
(s2(ε), A3(ε)), (s2(ε), A4(ε));
arcs on transversal loops: (A4(ε), D1(ε)), (D1(ε), B4(ε)),
(A1(ε), D2(ε)), (D2(ε), B1(ε)); (A2(ε), B2(ε)), (A3(ε), B3(ε));

For ε < 0:

vertices: si(ε), Di(ε), i = 1, 2; Aj(ε), Bj(ε), j = 1, 2, 3, 4;

edges: truncated separatrices: (si(ε), Di(ε)), i = 1, 2, (s1(ε), A1(ε)), (s1(ε), A2(ε)),
(s2(ε), A3(ε)), (s2(ε), A4(ε));
arcs on transversal loops: (A3(ε), D1(ε)), (D1(ε), B3(ε)),
(A2(ε), D2(ε)), (D2(ε), B2(ε)); (A1(ε), B1(ε)), (A4(ε), B4(ε)).

This completes the description of the bifurcating subgraph Nε of the vector field vε in
all four cases of degeneracies.

4 Proof of the structural stability criterion: isotopy of the
LMF graphs

In this section we will prove Theorem 6. Let us begin with general arguments that do not
depend on the class considered.

4.1 General part

Let V and W be unfoldings of topologically orbitally equivalent vector fields v0 and w0 of
classes AH,SN,HC, SC. Let Ĥ be a homeomorphism S2 → S2 that links v0 and w0. In
what follows, we will make some assumptions on Ĥ that may be obtained without loss of
generality.

Suppose that the families V and W are parametrized as in Section 3.4. We will prove
that the LMF-graphs Mε for vε and M̃ε for wε are isotopic. For this we will construct a
map Gε : Mε → M̃ε and check star and annuli-faces condition (defined in section 2.4) for
it. Recall that we call them S and A conditions respectively.

For all the elements and subgraphs of Mε described in Section 3, let the same notation
with tilde denote the corresponding object for the graph M̃ε. Let π̃ε : X̃ε → X̃0 be a
homeomorphism defined in Section 3.3.
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On the graph Xε the map Gε is defined by a general formula:

Gε|Xε := π̃−1
ε ◦ Ĥ|Xε ◦ πε : Xε → X̃ε.

Let Gε bring the following elements of Nε - singular points, separatrices and limit cycles
- to the corresponding elements of Ñε.

The map Gε is now almost defined. We should check that it may be correctly extended
to oriented transversal loops. Namely, we have to check that the corresponding truncation
vertices of Nε and Ñε follow on the corresponding oriented transversal loops in the same
order.

After that we will check S and A conditions.
The map Gε|Xε can be extended to a homeomorphism of the sphere; so, it satisfies both

S and A conditions. We have to check the S condition for the vertices of Nε only, and the
A condition for the faces whose boundary has a non-empty intersection with Nε.

This is done for the classes AH,SN,HC, SC one by one.

4.2 Class AH

There are no truncation vertices on the transversal loops of the graph Nε, so there is nothing
to check: the map Gε : Mε → M̃ε is well defined.

The only vertices of Nε are: Pε for ε < 0; Pε, two vertices on the empty transversal
loops l1, l2, and one vertex on the limit cycle cε. The star condition is obviously satisfied
for them.

Let us check theA condition. For ε < 0 the only one annuli-shaped face whose boundary
intersects Nε is bounded by Pε and l. The map Gε : Pε 7→ P̃ε, l 7→ l̃ is trivially extended to
a homeomorphism D → D̃, where D (D̃) is a disc bounded by l (l̃) and containing Pε (P̃ε).

For ε > 0, the union Nε ∪ l is homeomorphic to a union of four concentric circles
l1, c, l2, l0, each one inside the next, and their center O; let Hε be the corresponding home-
omorphism. The same is true for the union Ñε ∪ l̃; we note H̃ε the corresponding homeo-
morphism. Let D0 be the disk bounded by l0 with the center O. The homeomorphisms Hε

and H̃ε can be extended to homeomorphisms D → D0 and D̃ → D0 still denoted by Hε

and H̃ε.
Without loss of generality we may assume that Gε|Nε∪l = H̃−1

ε ◦ Hε|Nε∪l. This map
clearly satisfies the A condition.

Hence, graphs Mε and M̃ε are isotopic and therefore the families V and W are weakly
equivalent. Theorem 6 for the class AH is proved.

4.3 Class SN

Let us prove that the map Gε : Mε → M̃ε is well defined. For this we have to prove that the
truncation vertices of the graphs Mε and M̃ε follow in the same order on the corresponding
oriented transversal loops.

The points Aj(0), Bj(0) and Cj(0) on lj are mapped to Ãj(0), B̃j(0) and C̃j(0) by Ĥ;
the homeomorphism Ĥ preserves the order of the points on lj , j = 1, 2, 3. The points
Aj(ε), Bj(ε), Cj(ε) and Ãj(ε), B̃j(ε), C̃j(ε) are continuous in ε. Hence, they still follow in
the same order on lj and l̃j .

Consider the curves lFε and l̃F̃ε
. Without loss of generality, we may assume that

Ĥ(Γ−) = Γ̃−. Then Ĥ(Ej) = Ẽj . Hence, the order of points Ẽj on Γ̃− is the same as
of Ej on Γ−. The same holds for the points Ej(ε) and Ẽj(ε) because they depend continu-
ously on ε for ε ∈ (R, 0). The Poincaré maps ∆ε and ∆̃ε preserve the order both for ε < 0
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and ε > 0. Hence, the truncation vertices D̃1(ε), . . . , D̃n(ε) follow on l̃F̃ε
for ε < 0 (on l̃3

for ε > 0) in the same order as D1(ε), . . . , Dn(ε). For ε < 0, by the reduction principle, the
point Ã0(ε) ∈ l̃F̃ε

belongs to the arc from D̃n(ε) to D̃1(ε), like A0(ε) does. So the order of
truncation vertices on the transversal loops of vε is preserved by Gε.

Let us check S condition for Gε. For the truncation vertices it is trivial. For the saddles
sj and the map G0 := Ĥ|M0 it follows from the fact that Ĥ is a homeomorphism. The
deformations of saddles sj , s̃j and the germs of their separatrices are continuous in ε. This
implies S condition for Gε at the saddles sj(ε).

Let us check this condition at the saddle Sε for ε < 0. Note that the germs
(γ1
s (ε), Sε), (γ2

s (ε), Sε), (γ1
u(ε), Sε) tend to (γ1

s , P ), (γ2
s , P ), (γu, P ) respectively as ε↗ 0. For

ε = 0, G0 := Ĥ|M0 and Ĥ((γu, P )) = (γ̃u, P̃ ), Ĥ((γis, P )) = (γ̃is, P̃ ), i = 1, 2. By continuity
in ε, this implies that Gε preserves the order of separatrices at Sε. S condition for Gε is
checked.

Let us check the A condition. For both ε < 0 and ε > 0 there are annuli-shaped
faces that have a common boundary with Nε: the faces Fi(ε) that have exterior boundaries
li, i = 1, 2, 3 and hyperbolic attractors or repellers (hyperbolic singular points or limit
cycles) as the interior boundaries. If this interior boundary is a singular point then Gε can
be trivially extended to the corresponding face. Let Fi(ε) have the boundary li∪c(ε), where
c(ε) is a limit cycle. We construct the extension of πε : Xε → X0 to the closure of Fi(ε)
which is well defined because all the vertices on li and c(ε) for ε 6= 0 depend continuously
on ε for ε → 0. The extension will be also denoted by πε here. We construct the similar
extension of π̃ε : X̃ε → X̃0. Then π̃−1

ε ◦ Ĥ ◦πε : cl(Fi)→ cl(F̃i) is an extension of Gε to the
face Fi(ε).

For ε < 0 there is an annular face of the graph Mε, the one between Fε and lFε . For it
the A condition is obvious. No other annuli-shaped faces of the graph Mε whose boundary
intersects Nε exist. Indeed, for ε < 0 the graph Nε contains saddle separatrices intersecting
transversal loops; but the boundaries of the annuli-shaped faces of Mε contain no saddles,
see Theorem 7. This checks the A condition for Gε, ε < 0.

For ε > 0 this argument does not work: the arcs (Bi(ε), Ci(ε)) on the topological circles
li, i = 1, 2 are connected components of Nε. But still li are not the inner components
of the boundary of the annuli-shaped faces of Mε: they contain the truncation vertices
for ε ∈ (R, 0), hence, if the boundary of a face contains a part of li, it contains also the
corresponding truncated saddle separatrix. This checks the A condition for Gε in the class
SN.

4.4 Class HC.

Let us prove that Gε preserves the order of vertices on the transversal loops of Mε. Below
we use the notations from Section 3.4.

For ε < 0 we will prove it only for lFε , for ε > 0 only for l+ and l−. All the other transver-
sal loops are already considered in the case SN. As in the previous subsection we can assume
that Ĥ(Γ−) = Γ̃−, Ĥ(Ej) = Ẽj , j = 1, . . . , n and Ĥ(K3) = K̃3. So the points Ej ,K3 are
met on Γ− in the same order as Ẽj , K̃3 on Γ̃−, namely, E1, . . . , Ek,K3, Ek+1, . . . , En.

In case ε < 0, as it was mentioned in the Section 3.4, the order of vertices on lFε is
A0(ε), D1(ε), . . . , Dk(ε), A3(ε), Dk+1(ε), . . . , Dn(ε). The same holds for l̃F̃ε

. Hence, Gε :
Dj(ε) 7→ D̃j(ε), j = 1, . . . , n, Ai 7→ Ãi, i = 0, 3, preserves the order of vertices on the
transversal loop lFε .

In case ε > 0, the order of points D1(ε), . . . , Dk(ε) on l+ is the same as for the points
E1, . . . , Ek, the order of points Dk+1(ε), . . . , Dn(ε) on l− is the same as for the points
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Ek+1, . . . , En; the same holds for l̃+ and l̃−. Hence, Gε that sends the vertices on l±, to
the vertices on l̃± with the same indexes, keeps their order the same.

The S condition can be checked as in the case SN.
Let us check the annuli-faces condition. For ε < 0 the annuli-faces that have the common

boundary with Nε are: the face between Fε and its transversal loop lFε ; the face with the
exterior boundary li, i = 1, 2. These faces are considered in the previous subsection.

For ε > 0, there are the annuli-faces with the exterior boundaries li, i = 1, 2, too. In
addition two faces between the limit cycle cε and its transversal loops l+ and l− appear.
The map Gε preserves the orientation on transversal loops and the orientation on the cycle
cε (with regard to the orientation on S2). Hence, it can be extended to the faces described.

Let us suppose that the transversal loop li is an interior boundary of an annular face
Fi(ε) of the graph Mε, i = 1, 2. Without loss of generality we can assume i = 1. In this
case there is no saddle separatrix of v0 that intersects l1; hence, P as the ω−limit set of
all the trajectories that intersect l1. Then the annular face F1(ε) should be bounded by l1
and l+ and so vε is topologically equivalent to the north-south vector field on F1(ε). As Gε
preserves the orientation on the transversal loops, it can be extended from l1 ∪ l+ to the
closure of F1(ε).

Hence, the A condition is checked for the class HC.

4.5 Class SC

Let us prove that Gε is well defined. We consider ε < 0, the case ε > 0 can be obtained
changing the indexes.

As it was said in Section 3, the truncation vertices D1(ε), D2(ε) belong to the arcs
(A4(ε), B4(ε)), (A1(ε), B1(ε)) and can be arbitrarily close to the points A4(ε), A1(ε) re-
spectively.

The map Gε brings the order of points of Xε on li to that of X̃ε on l̃i. So it sends
the arc between Ai(ε) and Bi(ε) to the arc between Ãi(ε) and B̃i(ε). Ĥ sends the saddle
connection γ0 to the saddle connection γ̃0, so it sends the arc (Ai, Bi) to the arc (Ãi, B̃i),
not to its complement - we recall that we denoted by (Ai, Bi) the arcs on li such that
all the trajectories, that are close to γ0, intersect one of the arcs (Ai, Bi). Hence, Gε :
(Ai(ε), Bi(ε)) 7→ (Ãi(ε), B̃i(ε)), i = 1, 2, 3, 4, Dj(ε) 7→ D̃j(ε), j = 1, 2, can be correctly
prolonged on transversal loops.

Let us check the star condition. For truncation vertices it is trivial. Let us check it for
the saddles s1(ε) and s2(ε). The order of separatrices γ0, γ1, γ2 at s1 is the same as the order
of γ̃0, γ̃1, γ̃2 at s̃1; the order of γ0, γ4, γ3 at s2 is the same as the order of γ̃0, γ̃4, γ̃3 at s̃2. The
same holds for deformations γi(ε) because the germs (γk0 (ε), sk(ε)), k = 1, 2, (γj(ε), si(ε))
(where j = 1, 2, 3, 4, i = 1, 2 and γj(ε) is a separatrix of a saddle si(ε)) are continuous in ε.
The same holds for the vector field wε, ε ∈ (R, 0). As Gε maps the truncated separatrices
of vε to the corresponding separatrices of wε, it preserves the order of three separatrices at
s1(ε) and at s2(ε). Hence, it preserves the order of all the separatrices at s1(ε) and s2(ε).

Let us check the A condition. The only annuli-shaped faces of Mε that have a common
boundary with Nε are the faces with the exterior boundaries li, i = 1, 2, 3, 4. Gε can be
extended to them similarly to the case of transversal loops lj , j = 1, 2, 3 in SN.

Finally, we proved theorem 6.
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5 Structural stability of local families.
In this section we prove Theorem 3 mentioned in section 1.4.

Proof. We use the following theorem.

Theorem 12 (Sotomajor theorem, [S]). Quasi-generic vector fields form an open and
dense subset of the set Σ of structurally unstable vector fields. Quasi-generic vector fields
are structurally stable in the set Σ.

Let {vε} be a generic one-parameter vector field, let v0 be of class AH,SN,HC or SC.
Then, by the theorem below, v0 is structurally stable in Σ and particularly it is structurally
stable in the corresponding hypersurface of generic vector fields (AH,SN,HC or SC). For
generality we will call this hypersurface H. Let U ⊂ H be a neighbourhood of v0 such that
∀w ∈ U v0 ∼ w.

Let V be a generic local family that unfolds a vector fieldfrom the class
AH,SN,HC, SC. Let W be another such family close to V . If these two families are
close enough, then, by the Sotomayor theorem, vector fields v0 and w0 are orbitally topo-
logically equivalent. By Theorem 6, families V and W are weakly equivalent.
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