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Abstract

We classify global bifurcations in generic one-parameter local families of vector fields
on S2 with a parabolic cycle. The classification is quite different from the classical
results presented in monographs on the bifurcation theory. As a by product we prove
that generic families described above are structurally stable.
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1 Introduction

1.1 Main results

This article is a part of a larger investigation whose main goals are:

• To prove structural stability of generic one-parameter families of vector fields in the
two-sphere;

• To give a complete classification of the bifurcations in these families with respect to
the weak equivalence relation (the definition is recalled below).

These goals are achieved in [IS], [St], and the present paper.
Structural stability result is well expected. It was predicted in [S]; the sketch of the

proof (of another but close result) was given in [MP] with the note: “Full proofs will appear
in a forthcoming paper.” To the best of our knowledge, that paper was not written. Here
we prove structural stability for unfoldings of parabolic limit cycles, which constitutes the
first of the two main results of our paper.

Complete classification of the bifurcations seems to be quite unexpected. Global bifur-
cations in generic families that unfold a vector field with a separatrix loop are characterized
by a finite set on a circle considered up to a homeomorphism [IS]. Global bifurcations in
generic families that unfold a vector field with a parabolic cycle are characterized by two
finite sets on a coordinate circle R/Z, considered up to a certain equivalence relation (see
Definition 12). The latter result is the second main theorem of our paper. The precise
statements follow (see Theorem 1 and Theorem 6).
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Together with [IS] and [St], this paper achieves the goals stated at the beginning, and
thus completes the study of global bifurcations in one-parameter families.

These results are a part of a large program of the development of the global bifurcation
theory on the sphere outlined in [I16]. There was a belief, formulated by V.Arnold as
a conjecture in [AAIS, Sec. I.3.2.8], that a generic family is structurally stable up to
a weak equivalence: close finite-parameter families are weakly equivalent. This natural
conjecture turns out to be false for 3-parameter families, as was proved in a recent work [IKS]
(with weak equivalence replaced by moderate equivalence, which is a technical difference).
Namely, the authors prove that the moderate classification of families with “tears of the
heart” polycycle has numerical moduli, and generic family of this class is not structurally
stable. The effect is due to sparkling saddle connections that accumulate to the polycycle;
their order is different for close families, which implies the statement.

Now the following problems arise:

• Find out whether 2-parameter families of vector fields on S2 are structurally stable
(up to the weak equivalence);

• Classify their bifurcations;

• Distinguish structurally stable three-parameter families from the unstable ones, and
find new examples of structurally unstable three-parameter families.

These problems are natural steps that follow the present paper. Let us pass to the
detailed presentation.

By default, vector fields below are infinitely smooth vector fields on S2 with isolated
singular points, and families are families of vector fields on S2. The sphere is oriented, and
all the homeomorphisms of S2 under consideration preserve orientation.

1.2 Vector fields of class PC

Definition 1. A C2 vector field of class PC is a vector field with a parabolic limit cycle γ
and no other degeneracies. Namely, the following assumptions hold:

• all the singular points and limit cycles of the vector field except for γ are hyperbolic;

• the vector field has no saddle connections;

• the parabolic cycle γ is of multiplicity 2, that is, its Poincaré map has the form
x 7→ x+ ax2 + . . . , a 6= 0.

Vector fields of class PC form an immersed Banach manifold of codimension one in the
space of Cr-smooth vector fields on S2, r ≥ 3, see [S, Proposition 2.2].

1.3 Structural stability

Let us recall some basic definitions.

Definition 2. Two vector fields v and w on S2 are called orbitally topologically equivalent,
if there exists a homeomorphism S2 → S2 that links the phase portraits of v and w, that
is, sends orbits of v to orbits of w and preserves their time orientation.
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In this article, we consider one-parameter families of vector fields on B × S2. Here
B ⊂ R is the base of the family. We work with local families with bases (R, 0), in the
following sense.

Definition 3. A local family of vector fields at ε = 0 is a germ at {0} × S2 of a family on
B × S2, where B 3 0, B ⊂ R is open.

Definition 4. An unfolding of a vector field v is a local family for which v corresponds to
zero parameter value. We say that this family unfolds the vector field.

The following definition lists the notions of equivalence for local families of vector fields
that we will use in this paper.

Definition 5. Let B, B′ be topological balls in R that contain 0. Two local families of
vector fields {vα, α ∈ B}, {wβ, β ∈ B′} on S2 are called

• weakly topologically equivalent if there exists a map

H : B × S2 → B × S2, H(α, x) = (h(α), Hα(x))

such that h is a homeomorphism of the bases, h(0) = 0, and for each α ∈ B the map
Hα : S2 → S2 is a homeomorphism that takes the phase portrait of vα to the phase
portrait of wh(α).

• sing-equivalent if H is continuous on the union of all the singular points and hyper-
bolic limit cycles of the vector field v0.

• strongly topologically equivalent provided that the map H above is continuous.

Weak equivalence is also called mild equivalence in some sources.

Definition 6. A local family of vector fields is called weakly structurally stable if it is
weakly topologically equivalent to any nearby family.

Theorem 1. A generic one-parameter unfolding of a generic vector field of class PC is
weakly structurally stable.

Vector fields from this theorem have to satisfy an extra genericity assumption in addition
to those included in the definition of class PC. This assumption is presented in Sec. 1.7,
where an improved version of Theorem 1 is stated.

The genericity assumption for the unfolding in Theorem 1 is transversality to PC.
The previous theorem is wrong if the weak equivalence is replaced by the strong equiv-

alence, see [MP].
Remark 1. Sing-equivalence has the following property. Let V = {vε} and W = {wδ} be
two sing-equivalent families. For any singular point O of v0, let O(ε) be a singular point of
vε depending continuously on ε and such that O(0) = O. Put Õ = H0(O) and let Õ(δ) be
a similarly defined singular point of wδ. Then

Hε(O(ε)) = Õ(h(ε)). (1)

The same holds for limit cycles of vε, wδ.
Sing-equivalence is designed to imply this property.
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1.4 Time function

The following arguments are based on the heuristic principle: local dynamics near an
equilibrium point usually determines a canonical chart at this point.

Let v be a vector field of class PC, γ be its parabolic limit cycle. Let Γ be a cross-section
to γ, x a smooth chart on it with x(γ ∩ Γ) = 0. Let P be a germ of the corresponding
Poincaré map, P (x) = x+ax2 + . . . . By assumption, a 6= 0. Rescaling x and changing sign
if needed we will make a = 1; so we will assume that

P (x) = x+ x2 + . . . (2)

Theorem 2 (Takens, [T]). Let P be a C∞-smooth parabolic germ of the form (2). Then
it has an infinitely smooth generator: there exists a germ of a vector field u(x) = x2 + . . .
at zero, whose time one phase flow transformation equals P :

P = g1
u.

The smooth generator u of P is unique.

Let Γ be a cross-section to γ, put O = Γ ∩ γ, and let x be a chart on Γ with x(O) = 0
in which P has the form (2). Let Γ+ and Γ− be the parts of Γ where x ≥ 0 and x ≤ 0
respectively. Define the time functions on Γ+ and Γ−, unique up to adding a constant, in
the following way. Choose two small numbers b− < 0 < b+, and let T+(b) be the time of
the motion from the point b+ to the point b ∈ Γ+ \ {0} along the solution of the equation
ẋ = u(x); let T−(b) be the time of the motion from the point b− to the point b ∈ Γ− \ {0}
along the solution of the equation ẋ = u(x). In other words,

T+(b) =
∫ b

b+

dx

u(x) for b > 0, b ∈ Γ+,

T−(b) =
∫ b

b−

dx

u(x) for b < 0, b ∈ Γ−.

1.5 Large bifurcation support

The bifurcations in a local family that unfolds a vector field of class PC are not only reduced
to splitting and vanishing of the limit cycle γ. They also produce so called sparkling saddle
connections discovered by Malta and Palis [MP].

Suppose that the vector field v ∈ PC has two saddles E and I on different sides of
γ whose separatrices wind towards γ in the positive and negative time respectively. The
saddle E lies outside, and the saddle I inside γ; E and I stand for “exterior” and “interior”.
Let V = {vε} be an unfolding of v transversal to PC, v0 = v, E(ε) and I(ε) be the saddles of
vε continuous in ε and such that E(0) = E, I(0) = I. Let γ disappear for ε > 0. Then there
exists a sequence εn ↘ 0 such that the vector fields vεn have saddle connections between
the saddles E(εn), I(εn). These connections are called sparkling saddle connections.

This motivates the following definition.

Definition 7. Let v ∈ PC. The large bifurcation support of v is the union of the parabolic
cycle γ and the closures of all the separatrices of the hyperbolic saddles that wind towards γ
in the negative or positive time.

Remark 2. Large bifurcation supports are defined in a much more general setting in [I16].
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γ 

Figure 1: Large bifurcation support of a PC vector field (shown in thick curves). Here and
below asterisks show sinks and sources of a vector field

The term is motivated by the heuristic statement that all the bifurcations that occur in
the generic unfolding of v are determined by those in a neighborhood of the large bifurcation
support of v. For vector fields of class PC this follows from Theorem 6 below. In the general
setting it is proved in [GI*], work in progress.

The large bifurcation supports for the vector fields of class PC are characterized by two
so called marked finite sets on a circle.

1.6 Marked finite sets

Large bifurcation supports may be rather complicated, see Figure 1.
Yet they admit a simple combinatorial description. The Poincaré map on Γ−, as well

as on Γ+, in the charts T±, is the mere translation by 1:

T±(P (x)) = T±(x) + 1.

Hence, the set of orbits of P on Γ± is a coordinate circle S1
± = R+/Z, the coordinate is

T± (mod Z). Note that this coordinate is defined uniquely up to an additive constant that
depends on the choice of b± in Sec. 1.4.

Denote by D+ the set of all intersection points of the separatrices that wind toward γ
with the half open segment [b+, P (b+)), b+ ∈ Γ+. In the same way the set D− is defined
for b− ∈ Γ−. Let

A± = T±(D±) (mod Z), A± ⊂ S1
±. (3)

Let us define the equivalence relations on D+ and D−. Namely, two points of D+ (or
D−) are equivalent if they belong to the separatrices of the same saddle. This induces
equivalence relations on A+ and A−. Note that any two equivalence classes (a, b), (c, d) are
not intermingled on the oriented circle: either both points c, d belong to an arc from a to
b, or none of them.

Definition 8. The equivalence relation on a finite set on a circle is called proper if each
equivalence class consists of one or two points, and any two classes of two points each are
not intermingled in the sense explained above.

A finite set on a circle with a proper equivalence relation is called marked.

Thus for any vector field v ∈ PC a pair of marked sets A±(v) on coordinate circles is
defined.
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Definition 9. The marked sets A±(v) are called the characteristic pair (of sets) for the
vector field v ∈ PC.

Remark 3. Recall that the time coordinates on coordinate circles are defined modulo addi-
tive constants that depend on the choice of b± in Sec. 1.4. So the characteristic sets A±(v)
are defined modulo additive constants.

1.7 Non-synchronization condition

Definition 10. Two finite sets A+, A− ⊂ S1 are non-synchronized provided that for any
α ∈ R,

#
(
(A+ + α) ∩A−

)
≤ 1. (4)

We can now give an explicit form of Theorem 1.

Theorem 3. Suppose that characteristic sets A±(v) for a vector field v ∈ PC are non-
synchronized. Then any local one-parameter unfolding of v transversal to the Banach man-
ifold PC is structurally stable in the space of one-parameter families with the C1 metric on
it.

This theorem is proved in Sec. 4.

Definition 11. One-parameter local families described by this theorem are called PC
families.

The following realization theorem holds.

Theorem 4. Let A± be a pair of marked non-synchronized set on the coordinate circles.
Then there exists a vector field v of class PC such that A± are characteristic sets of v.

It is proved in Sec. 2.4. The vector field set v whose characteristic sets coincide with
A± is in no way unique.

1.8 Topologically equivalent vector fields of class PC with non-equivalent
one-parameter unfoldings

Theorem 5. There exist vector fields mentioned in the title of this section. More precisely,
there exist topologically equivalent vector fields of class PC whose generic one-parameter
unfoldings are not sing-equivalent.

We prove this theorem in Sec. 5.
We conjecture that this is the only result of this kind: bifurcations in other generic

one-parameter unfoldings are determined by the topology of the phase portrait of an un-
perturbed vector field.

Conjecture 1. Consider two generic one parameter local families of vector fields {vε} and
{wδ} such that v0, w0 are not of class PC. Suppose that v0, w0 are orbitally topologically
equivalent. Then these local families {vε} and {wδ} are weakly equivalent.
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1.9 Classification of PC families

To any pair of finite sets on coordinate circles ordered counterclockwise and enumerated:

A+ = {a+
1 , ..., a

+
K}, A

− = {a−1 , ..., a
−
M}

a set of pairwise differences corresponds:

τkm := {a+
k − a

−
m}, Λ(A±) := {τkm | k = 1, ...,K;m = 1, ...,M}, (5)

where {a+
k −a−m} ∈ [0, 1) stands for the fractional part of a+

k −a−m; that is, τkm is the length
of the positively oriented arc from a−m to a+

k . A pair A± is non-synchronized iff all the
elements of the set Λ(A±) are pairwise distinct.
Remark 4. If one of two sets A−, A+ is empty, the set Λ(A±) is empty.
Remark 5. If we add a shift to one of the sets A±, then the shift is added to the set
of differences Λ(A±): Λ(A±) + α = Λ(A+ + α,A−). This is the reason for considering
Λ(B±) + α in the following definition.

Definition 12. Two non-synchronized pairs of marked finite sets A± and B± on two circles
are equivalent if |A−| = |B−|, |A+| = |B+|, and for some shift x 7→ x + α, the sets Λ(A±)
and {Λ(B±) + α} are ordered in the same way on [0, 1). In more detail, let

B+ = {b+
1 , ..., b

+
K}, B

− = {b−1 , ..., b
−
M}

be ordered counterclockwise, and put

λkm := {b+
k − b

−
m}, Λ(B±) = {λkm | k = 1, . . . ,K;m = 1, . . . ,M}.

Then there exists α ∈ R such that

τkm > τk′m′ ⇒ {λkm + α} > {λk′m′ + α}. (6)

We will use this definition for characteristic pairs of sets, see Definition 8 of Sec. 1.6.
Recall that the characteristic sets A±(v) for a vector field v are well-defined up to additive
constants, so the equivalence of characteristic sets for two vector fields is well-defined.

Definition 13. Let two vector fields v, w of class PC be orbitally topologically equivalent.
Enumerate the sets A±(v) counterclockwise along coordinate circles. This enumeration
and the orbital topological equivalence of v, w induce the enumeration of the sets Ã±(w):
the intersections of transversals with corresponding separatrices of v, w will have the same
numbers.

Now, the vector fields v and w are said to have non-synchronized and equivalent char-
acteristic sets if A±(v) and A±(w) are non-synchronized and equivalent in the sense of
Definition 12 (with the numbering described above).

Theorem 6. 1. Let two PC families be sing-equivalent. Then their characteristic sets on
the coordinate circles are equivalent in the sense of Definition 13.

2. Let two vector fields of class PC be orbitally topologically equivalent. Let their
characteristic pairs be non-synchronized and equivalent in the sense of Definition 13. Then
the generic unfoldings of these two vector fields are sing-equivalent.

Any pair of non-synchronized marked finite sets determines the bifurcation scenario
(sequence of bifurcations) in the corresponding class of PC families. This scenario will be
explicitly described, see Sec. 2.6.

7



2 Bifurcations in the PC families

2.1 Embedding theorem for families

Takens embedding Theorem 2 for parabolic germs may be extended to their unfoldings.

Theorem 7. [IYa] Let Pε be a generic one-parameter C∞ unfolding of a parabolic germ

Pε(x) = x+ x2 + ε+ . . . .

Then in the domain {ε ≥ 0} \ {0, 0}, the family Pε is C∞ equivalent to the time one phase
flow transformation of the field

uε(x) = x2 + ε

1 + a(ε)x, (7)

where a(ε) is a C∞ function; the equivalence is infinitely smooth both in x and ε.

The coordinate xε that brings Pε to the time-one shift of the vector field uε is called
normalizing. From now on, the coordinate on the cross-section Γ for ε ≥ 0 is the normalizing
coordinate xε.
Remark 6. Since the normalizing coordinate xε is C∞ smooth on the set {ε = 0}\{0, 0}, it
may be smoothly extended to some neighborhood of any point of this set. As a corollary,
all the derivatives of xε at ε = 0, xε 6= 0 exist and are finite.

2.2 Transversal loops and canonical coordinates on them

Consider a vector field v of class PC; let γ be its parabolic cycle, Γ be a cross-section to
γ, O = Γ ∩ γ, and

P : (Γ, O)→ (Γ, O)

be the germ of the Poincaré map corresponding to γ. Consider a generic unfolding V = {vε}
of v, v0 = v. Let Pε be the corresponding Poincaré map of vε, and xε the corresponding
normalizing chart on Γ provided by Theorem 7. Let C+ and C− be two transversal loops
around γ, C± ∩ Γ = b±. For ε > 0, the cycle γ vanishes, and the Poincaré map ∆ε : C− →
C+ is well-defined. We will now choose coordinates ϕ±ε on C± such that ∆ε becomes a
rotation in these coordinates.

For ε > 0 consider a one form ωε on Γ dual to the vector field uε:

ωε = dxε
uε(xε)

.

For small b ∈ Γ and ε > 0 let
T±ε (b) =

∫ xε(b)

xε(b±)
ωε. (8)

Let
τ(ε) = T−ε (b+).

This function may be explicitly calculated:

τ(ε) = 1√
ε

(arctan xε(b
+)√
ε
− arctan xε(b

−)√
ε

) + a(ε)
2 log x

2
ε(b+) + ε

x2
ε(b−) + ε

. (9)

Note that for ε > 0,
T−ε (b) = T+

ε (b) + τ(ε).

8



b  +

b

b

a a

b  

C

C  
_

_

'
'

+

¡

Figure 2: Canonical coordinates and the Poincaré map on the transversal loops

Note that formula (8) works for ε = 0 also, with the following restriction:

T−0 = T− on Γ− \ {0};

T+
0 = lim

ε→0
T−ε − τ(ε).

The time functions T±ε induce coordinates ϕ±ε on C± in the following way. Consider first
C−. Take a point a ∈ C− and emerge a forward orbit of vε from it, see Figure 2. Let
b ∈ Γ− be its first intersection point with Γ. Take

ϕ−ε (a) = T−ε (b).

Note that ϕ−ε (b−) = 0; as a tends to b−, one of the one-sided limits of ϕ−ε at b− is 0 and
the other is 1. Thus ϕ−ε maps C− onto the coordinate circle S1

−. The same construction
provides a function

ϕ+
ε : C+ → S1

+, a
′ 7→ T+

ε (b′),

see Figure 2. These ε-dependent coordinates ϕ±ε on the transversal loops C± are called
canonical.

Without loss of generality we may assume that the cycle γ is time oriented clockwise.
Then the transversal loops C± are oriented counterclockwise by the canonical coordinates.

2.3 The Poincaré map of the transversal loops

Consider a small ε > 0. The orbit of the vector field vε that starts at a point a ∈ C−

eventually reaches C+ at a unique point a′. This defines the Poincaré map

∆ε : C− → C+, a→ a′

along the orbits of vε, see Figure 2 again.

Proposition 1. In the coordinates ϕ±ε , the Poincaré map ∆ε : C− → C+ is a mere rotation:

ϕ+
ε (∆ε(a)) = ϕ−ε (a)− τ(ε) (mod Z). (10)

In what follows, the map ∆ε in ϕ±ε -coordinates (i.e. the rotation by −τ(ε)) will be
denoted by the same symbol.
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Proof. Let a ∈ C−, and b be the same as above, that is, the first intersection point with Γ
of the forward orbit of vε emerging from a. Let a′ ∈ C+ be the image of a: a′ = ∆ε(a),
and b′ be the first intersection point with Γ of the forward orbit of vε that emerges from a′.
Then, by definition of canonical coordinates,

ϕ−ε (a) = T−ε (b), ϕ+
ε (a′) = T+

ε (b′).

On the other hand,
b′ = Pnε (b)

for some n. Hence,
T−ε (b′)− T−ε (b) = n,

because in the chart Tε the Poincaré map Pε is a mere shift by 1. Moreover,

T+
ε (b′) = T−ε (b′)− τ(ε).

Recall that a′ = ∆ε(a). Hence,

ϕ+
ε (∆ε(a)) = ϕ+

ε (a′) = T+
ε (b′) = T−ε (b′)−τ(ε) = T−ε (b)−τ(ε) (mod Z) = ϕ−ε (a)−τ(ε) (mod Z),

see Figure 2. This proves the proposition.

2.4 Characteristic sets on the transversal loops

Let S− = {s−m} be the set of all intersections of C− with separatrices of v, enumerated
counterclockwise along C−. Let l−m be the corresponding separatrices and Em be the corre-
sponding saddles of v. The canonical coordinate ϕ−0 maps the set S− to the characteristic
set

A− = {a−1 , ..., a
−
M}, a

−
m = ϕ−0 (s−m),

see Figure 3.
If two points a−m = ϕ−0 (s−m) and a−m′ = ϕ−0 (s−m′) are equivalent as the points of the

marked set A−, then Em = Em′ .
Similarly, separatrices l+k of saddles Ik are all separatrices of v that intersect C+, S+ =

{s+
k } are intersection points, and a+

k = ϕ+
0 (s+

k ). This determines another characteristic set

A+ = {a+
1 , ..., a

+
K}, a

+
k = ϕ−0 (s+

k ).

2.5 The connection equation

In this and the next sections we describe the bifurcations in PC families.
Let V = {vε} be a PC-family. The vector fields vε have saddles Em(ε), Ik(ε) con-

tinuously depending on ε, Em(0) = Em, Ik(0) = Ik. The germs of their separatrices
at these saddles depend continuously on ε. Denote by l−m(ε) the separatrix with a germ
(l−m(ε), Em(ε)) that is continuous in ε and coincides with (l−m, Em) for ε = 0. In the same
way the separatrices l+k (ε) of the saddles Ik(ε) are defined. Let s−m(ε) be the (unique for ε
small) intersection of l−m(ε) and C−; let s+

k (ε) be the intersection of l+k (ε) and C+. Define
S±(ε) = {s±i (ε)}. Put

a−m(ε) := ϕ−ε (s−m), a+
k (ε) := ϕ+

ε (s+
k ),

10
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Figure 3: Characteristic sets on the transversal loops for the PC vector field

and let A−(ε) := {a−m(ε)}, A+(ε) := {a+
k (ε)}. The sets A±(ε) depend continuously on ε

and coincide with A± for ε = 0. In particular, if A± is a pair of non-synchronized sets,
then A±(ε) also is for ε small.

Let
τkm(ε) = {a+

k (ε)− a−m(ε)}; τkm(ε) ∈ [0, 1). (11)

If none of τkm is equal to zero, τkm(ε) depends continuously on ε and coincides with τkm for
ε = 0. Without loss a generality, we may and will assume that none of τkm is 0. Elsewhere,
we will slightly change b− keeping b+ unchanged. This will rotate A− and preserve A+,
thus change τkm by an additive constant.

As the pair A±(ε) is non-synchronized, the values of τkm(ε) are pairwise distinct.
A saddle connection between the saddles Em(ε) and Ik(ε) occurs iff

a+
k (ε) = ∆ε(a−m(ε)).

By Proposition 1, this is equivalent to

a+
k (ε) = a−m(ε)− τ(ε) (mod Z)

or equivalently,
τkm(ε) = −τ(ε) (mod Z).

Another form of this equation is:

τkm(ε) = −τ(ε) + n, n ∈ N. (12)

This is a connection equation.

Proposition 2. For ε small and n large enough, equation (12) has a unique solution
ε = εkmn.

When ε = εkmn, the vector field vε has a separatrix connection between the saddles
Ek(ε) and Im(ε). This separatrix connection makes n winds around γ between C− and
C+.
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Proof. Take ε0 > 0 so small that the function ε 7→ τkm(ε) is well-defined on [0, ε0]. By
Theorem 7, this function has a bounded derivative on the whole segment. On the other
hand, τ ′(ε)→ −∞ as ε→ 0. Indeed, by (9)

τ(ε) = F (x, ε)
∣∣∣x = xε(b+)
x = xε(b−)

where
F (x, ε) = 1√

ε
arctan x√

ε
+ a(ε)

2 log(x2 + ε).

Then

τ ′(ε) = Fε(x, ε)|x=xε(b+)
x=xε(b−) + Fx(xε(b+), ε) ·Dεxε(b+)− Fx(xε(b−), ε) ·Dεxε(b−).

For any b 6= 0, the functions F (b, ε) and xε(b) are well defined in a neighborhood of ε = 0
and have bounded derivatives. Hence, the second and the third terms in the expression for
τ ′(ε) are bounded near ε = 0. On the other hand,

Fε(x, ε) = − 1
2ε3/2 arctan x√

ε
− 1

2ε(x2 + ε) + . . .

dots stand for bounded terms. Hence,

Fε(x, ε)|x=xε(b+)
x=xε(b−) → −∞ as ε↘ 0.

Take ε so small that
(τ(ε) + τkm(ε))′ < 0.

Then for any n > τ(ε0) + τkm(ε0), the connection equation (12) has a unique solution
εkmn < ε0.

2.6 The bifurcation scenario

The bifurcation scenario in a one-parameter family is a sequence of bifurcations that occur
as ε changes. The previous section shows that for ε > 0, the sparkling saddle connections
between saddles Ek(ε) and Im(ε) occur for ε = εkmn.

Each bifurcation of the sparkling saddle connection goes in the same way as for usual
saddle connections: the incoming separatrix of one saddle changes its α-limit set, and the
outgoing separatrix of another saddle changes its ω-limit set, see Figure 4a. The only
additional feature of the sparkling saddle connection is that for the critical parameter value
ε = εkmn the connection between the saddles Em(ε) and Ik(ε) winds around γ many times,
see Figure 4b. Yet topologically these pictures are the same: the second one may be
transformed to the first one by the iterated Dehn twist.

To finish the description of the bifurcation scenario, we need to describe the order in
the set {εkmn}. Recall that we assume without loss a generality that none of τkm is equal
to zero. The order of numbers εkmn is described by the following proposition.

Proposition 3. For sufficiently large n and any k,m, k′,m′, we have εkmn < εk′m′(n−1).
For sufficiently large fixed n, the order of εkmn does not depend on n and coincides with

the order of τkm. In more detail, if for some natural k,m, k′,m′, we have 0 < τkm < τk′m′ <
1, then for sufficiently large n, εkmn < εk′m′n.
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(a) (b)

Figure 4: The bifurcation of a saddle connection (left) and the bifurcation of the sparkling
saddle connection (right). Large circles are transversal loops around α-and ω-limit sets of
saddle separatrices, small circles are saddles
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Proof. The first statement follows directly from the connection equation (12), the inequality
0 < τkm(ε) < 1 and monotonicity of τ : this function tends monotonically to infinity as
positive ε decreases.

Since τkm = τkm(0) and τkm(ε) depends continuously on ε, we have τkm(εkmn) <
τk′m′(εk′m′n) for large n. Now (12) implies −τ(εkmn) < −τ(εk′m′n). However, the function
τ decreases in a small neighborhood of zero, so εkmn < εk′m′n.

Recall that the numbers τkm are well-defined modulo an additive constant that depends
on the choice of b±, and the set of bifurcation parameters {εkmn} does not depend on this
choice. However, that does not contradict the proposition above, because when we change
b±, the same bifurcation value ε = εkmn will obtain a different number n. Here we describe
this change in more detail.

Definition 14. Let εkmn be as above. Let i, 1 < i < K, and j, 1 < j < M be two indices,
N be an integer number.

A cyclical shift of n in the set εkmn is the change of numeration: the bifurcation pa-
rameter εkmn obtains indices kmn′, where n′ = n+N for εkmn < εijn and n′ = n+N − 1
otherwise.

Suppose that we change our choice of b± replacing these points by b̃±. The number
τkm(ε) is replaced by τ̃km(ε) = {τkm(ε) +α(ε)}, where α(ε) = T−ε (b̃−)−T+

ε (b̃+); the charts
T±(ε) correspond to b±, see (8). We assume that none of τ̃km(0) is zero. Similarly, τ(ε) is
replaced by τ(ε)− α(ε).

Proposition 4. The change of b± described above results in a cyclical shift of n in the set
{εkmn}; any cyclical shift may be achieved.

Proof. Recall that εkmn is the solution of the connection equation τkm(ε) = −τ(ε) + n.
Then it also solves the equation τkm(ε) + α(ε) = −τ(ε) + α(ε) + n, i.e.

{τkm(ε) + α(ε)} = −(τ(ε)− α(ε)) + n− [τkm(ε) + α(ε)].

This is a connection equation in new coordinates, but n is replaced by n− [τkm(ε) + α(ε)].
So the bifurcation parameter εkmn will obtain another number n′ = n− [τkm(ε) + α(ε)].

Note that the integer number [τkm(ε) + α(ε)] does not depend on ε for small ε; this
follows from the fact that none of τ̃km(0) is zero. However it may depend on k,m: if it
equals N for 0 < τkm(ε) < {1 − α(ε)}, then it equals N + 1 for {1 − α(ε)} < τkm(ε) < 1.
These inequalities on τkm(ε) are equivalent to εkmn < εijn and εkmn ≥ εijn for some i, j,
because the order in the set {εkmn, n fixed} is the same as the order of τkm; so we have a
cyclical shift of n in the set {εkmn}. One can easily show that the choice of b̃± may give
any prescribed value of α(0), thus it may result in arbitrary cyclical shift of {εkmn}. This
completes the proof.

We conclude that the bifurcation scenario in PC families repeats cyclically as ε → 0.
As ε decreases, in the family vε we have several saddle connections that make n winds in a
small neighborhood of γ between C− and C+, then several saddle connections that make
n + 1 winds, etc. The n-wind saddle connections occur in one and the same order for all
n, and this order is determined by the order of τkm. However, the number n of winds of a
particular saddle connection depends on the choice of b−, b+.

One of our main goals is achieved: the bifurcation scenario is described and justified.
Note that the bifurcating separatrices of the vector fields vε are located not only inside

a small neighborhood of the large bifurcation support (see Definition 7), but also outside it.
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(a) (b) (c)

Figure 5: Realization of characteristic sets: steps a, b, c.

Yet this bifurcation is predicted by what happens in a neighborhood of the large bifurcation
support.

2.7 Realization Lemma for discs

In this and the next sections Theorem 4 is proved, skipping the routine details.
Begin with a Realization Lemma that will be used not only here but in the study of the

global bifurcations of the vector fields with a separatrix loop. Consider a Morse – Smale
vector field in a disc D with the boundary C transversal to v. No special coordinate on C
is considered. Let A be the set of the intersection points of the separatrices of v with C;
two points of A are equivalent iff they belong to the separatrices of the same saddle. Thus
A is a marked set. Let us call it the characteristic set of v.

Lemma 1. Consider a marked set A on a circle C that is a boundary of a disc D. Then
there exists a C∞ vector field v in D such that A is a characteristic set of v.

Proof. Without loss of generality, we assume that the vector field v on C points inside D.
a. Take any two equivalent points of the set A and connect them by a smooth simple

arc transversal to C at its endpoints, whose interior part lies in D. The arcs should be
pairwise disjoint. Take a point in each arc different from its endpoints; this will be a saddle
of the vector field v to be constructed. The parts of the arcs from the endpoints to the
saddles should be arcs of the incoming separatrices of v, see Figure 5a. This operation is
proceeded for all the pairs of equivalent points of A.

b. The disc D is split by the arcs just constructed to topological disks. Let us choose a
point inside each of these disks; this will be an attractor of v. Connect each saddle on the
boundary of the topological disk above to the attractor inside it; this will be an outgoing
separatrix of the saddle, see Figure 5b. Now each saddle has four separatrices: two ingoing
and two outgoing.

c. The domains to which D is split have one of the two shapes shown on Figure 6.
On any arc of the curve C which is an edge of the domains mentioned above, take all

the points of the set A; each of them is a one-point equivalence class in the marked set A.
Add to this point a graph shown at Figure 7a; the attractor a on this figure should coincide
with the attractor a in the domain, see Figures 7b, 7c. The construction of the separatrices
of v is over, see Figure 5c. We can now construct the vector field v with these separatrices
in D. This may be easily done in any connected component of the complement to these
separatrices in D. It is easy to make the vector field v smooth.
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Figure 6: Domains constructed in Step b
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Figure 7: Constructing unstable separatrices in Step c

2.8 Realization Theorem for the sphere

Here we prove Theorem 4. The vector field will be constructed separately in the annular
neighborhood of the parabolic cycle, and in the components of its complement to the sphere.
Begin with the annulus.

Let U be the annulus 1 ≤ r ≤ 3 in the polar coordinates r, α. Consider a vector field
vU in U given by

α̇ = 1, ṙ = −(r − 2)2.

This system has a parabolic cycle γ given by {r = 2}. Let Γ be a cross-section to γ that
belongs to the ray α = 0. Let C± be the boundary circles of U : C− = {r = 3}, C+ =
{r = 1}. Let ϕ± = ϕ±0 be the coordinates on C± constructed for v|U as in Section 2.2. Let
A± ⊂ C± be the characteristic sets given in Theorem 4.

Let D± be the disc on the sphere disjoint from the interior of U and bounded by
C± : S2 = D+ ∪ U ∪D−. By Lemma 1, there exists a smooth vector field v± on D± such
that A± is a characteristic set of v± in D±. Thus we have constructed a piecewise C∞
vector field W on S2 that is discontinuous on C±. Let us change the smooth structure on
S2 in such a way that W will become a C∞ smooth vector field. We will get a smooth
vector field W on a smooth manifold M2 homeomorphic to a sphere. But there exists only
one smooth structure on S2. Hence, there exists a C∞ diffeomorpism H : M2 → S2. The
vector field v = H∗W is the desired one. This proves Theorem 4.

3 Classification of PC-families
In this section we prove Theorem 6.

16



3.1 Theorem 6 part 1

Our goal is to prove that any pair of sing-equivalent local families gives rise to two pairs
of characteristic sets that are equivalent in the sense of Definition 13. The heuristic proof
is straightforward: as the families V and W are sing-equivalent, the homeomorphism h
identifies the values of ε and δ that correspond to saddle connections, thus identifies {εkmn}
and {δkmn}. Proposition 3 implies that the sets Λ(A±) and Λ(B±) are ordered in the same
way. This implies the statement.

Let us pass to the detailed proof.
Let V = {vε} and W = {wδ} be two families satisfying assumptions of Theorem 6 part

1. Let H = (h,Hε) be the sing-equivalence of V,W . Following the previous sections, we
denote by γ the parabolic cycle of v0, by C± its transversal loops, by l±j (ε) the separatrices
of hyperbolic saddles Ej(ε), Ij(ε) of vε that cross C±. Let γ̃, C̃±, l̃±j (δ), Ẽj(δ), Ĩj(δ) be
analogous objects for the family W such that l̃±j = H0(l±j ), Ẽj = H0(Ej), Ĩj = H0(Ij).
We assume that the parabolic cycles disappear for ε > 0, δ > 0, otherwise we reverse the
parameter.

We will need the following lemma on sing-equivalence.

Lemma 2. In the above assumptions, Hε(l±i (ε)) = l̃±i (h(ε)).

This lemma implies Theorem 6 part 1. Indeed, let A± be characteristic sets for v0, and
let B± be characteristic sets for w0. Since the vector fields v0 and w0 are topologically
conjugate, we have |A+| = |B+| and |A−| = |B−|. Let εkmn be bifurcation parameters for
the family V and δkmn be bifurcation parameters for W .

Now, for ε = εkmn, the separatrices l+k (ε) and l−m(ε) coincide, thus their images
Hε(l+k (ε)) = l̃+k (h(ε)) and Hε(l−m(ε)) = l̃−m(h(ε)) coincide; here we use Lemma 2. So the
separatrices l̃+k (h(ε)) and l̃−m(h(ε)) of wh(ε) form a saddle connection, and we conclude that
h(εkmn) = δkmn′ for any n and some n′.

Finally, the homeomorphism h takes the set {εkmn} to the set {δkmn} and preserves
k,m. However it may change n.

Note that {εkmn | n = n0} is the set of |A−|·|A+| subsequent numbers in the set {εkmn},
so h takes them to |A−| · |A+| = |B−| · |B+| subsequent numbers among {δkmn}. Recall that
changing b±, we may achieve any cyclical shift of n in the set {εkmn}, see Proposition 4. So
with a suitable choice of b±, we may and will assume that h(εkmn) = δkmn. By Proposition
3, this implies that the sets Λ(A±) and Λ(B±) are equivalent in the sense of Definition 13.

Proof of Lemma 2. We only prove the lemma for l−i ; for l
+
i , the proof is analogous. We

have two topologically different cases: l−i is the only separatrix of Ei that intersects C−, or
both unstable separatrices of Ei intersect C−. We start with the second case.

Case 1. Consider a saddle E whose two unstable separatrices wind towards γ. Let
L1, L3 be these separatrices of E (so L1 = l−i and L3 = l−j for some i, j; E = Ei = Ej), and
let L2, L4 be two its stable separatrices. Let R2 = α(L2) and R4 = α(L4) be the α-limit
sets of these separatrices; both of them are either hyperbolic singular points, or hyperbolic
limit cycles. Note that R2 6= R4 because these sets are on two different sides with respect
to γ ∪ L1 ∪ L3, see Fig. 8a.

Let Eε, (Lεi , Eε), and Rεi be continuous families of singular points, germs of separatrices,
and repellors of vε such that E0 = E,L0

i = Li, R
0
i = Ri. Let Ẽ, L̃i, R̃i be the images of

E,Li, and Ri under H0. Let Ẽδ, (L̃δi , Ẽδ), R̃δi be continuous families of singular points,
germs of separatrices, and repellors of wδ.
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Figure 8: Two cases for Lemma 2

The definition of sing-equivalence implies that Hε(Eε) = Ẽh(ε) and Hε(Rεi ) = R̃
h(ε)
i . We

should prove that the analogous statement holds for separatrices: Hε(Lεi ) coincides with
L̃
h(ε)
i . Clearly,Hε(Lε1) is an unstable separatrix of Ẽh(ε); two possibilities areHε(Lε1) = L̃

h(ε)
1

and Hε(Lε1) = L̃
h(ε)
3 . Our goal is to prove that the second case is impossible. Since Hε

preserves orientation, it preserves a cyclical order of separatrices at Eε, so in this case, we
must have Hε(Lε2) = L̃

h(ε)
4 : in comparison with H0, the map Hε rotates separatrices of Eε.

Since Hε is a homeomorphism that conjugates vε to wh(ε), it respects α-, ω- limit sets.
So the α-limit set of Hε(Lε2) must be Hε(Rε2) = R̃

h(ε)
2 . But the α-limit set of L̃h(ε)

4 is R̃h(ε)
4 .

The contradiction shows that Hε(Lε2) 6= L̃
h(ε)
4 . Thus Hε(Lεi ) = L̃

h(ε)
i for all i, which proves

the lemma in Case 1.
Case 2. Suppose that E has only one unstable separatrix L1 that winds towards γ, and

other its separatrices L2, L3, L4 have hyperbolic α- and ω-limit sets (see Fig. 8b). Then
similar arguments as in Case 1 apply to L3. Namely, if the ω-limit set of L3 is A3, then the
separatrix Hε(Lε3) must have the ω-limit set Ãh(ε)

3 , while L̃h(ε)
1 has its ω-limit set inside γ.

So Hε(Lε3) 6= L̃
h(ε)
1 , thus Hε(Lεi ) = L̃

h(ε)
i for all i. This proves the lemma in Case 2.

3.2 Theorem 6 part 2

Let V = {vε} and W = {wδ} be two families satisfying assumptions of Theorem 6. Let Ĥ
be an orbital topological equivalence of v0 and w0.

Let γ be a parabolic cycle of v0; let C+ and C− be its transversal loops. We assume
that C− is outside γ and C+ is inside it. Let U be the open annulus bounded by C− and
C+. Let D± be the disc on the sphere disjoint from the interior of U and bounded by C±,
so that S2 = D− ∪ U ∪D+.

Let γ̃, C̃±, Ũ , D̃± be analogous sets for the family W . We may and will modify Ĥ so
that Ĥ(C±) = C̃±. Recall that the choice of C̃± implies that the trajectories starting on
C̃− wind towards γ̃, and the trajectories starting on C̃+ are repelled from γ̃. We assume
that γ, γ̃ are oriented clockwise by time orientation.

We will use the notation of Section 2.5 for the family V : l±j (ε) are separatrices of
hyperbolic saddles Ej(ε), Ij(ε) of vε that cross C±. Let l̃±j (δ), Ẽj(δ), Ĩj(δ) be analogous
objects for the family W such that l̃±j = Ĥ(l±j ), Ẽj = Ĥ(Ej), Ĩj = Ĥ(Ij).

As in Section 2.5, a±j (ε) are intersection points of l±j (ε) with C± in ϕ±ε -chart, and
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∆ε : C− → C+ is the Poincaré map along vε. Let ã±j (δ) and ∆̃δ be the corresponding
objects for {wδ}.

3.3 Construction of the homeomorphism of bases h : (R, 0)→ (R, 0)

Assume that for families V = {vε} andW = {wδ}, the parabolic cycle disappears for ε > 0,
δ > 0; otherwise we reverse the parameter.

The equivalence of the characteristic sets for V and W (see Definition 13) implies that
the numbers τkm are ordered on [0, 1) in the same way as {λkm+α} for some α. Recall that
λkm are well-defined modulo an additive constant that depends on the choice of coordinates
on coordinate circles. Let us add a shift by α to the coordinate on S1

+; this will add α to all
numbers λkm. Finally, we may and will assume that the numbers τkm and λkm are ordered
in the same way.

Let {εkmn} be the sequence of the bifurcation parameter values defined in Section 2.5
for the family V , and {δkmn} be the analogous sequence for the family W . Proposition 3
implies that the order of numbers εkmn and δkmn, n fixed, is the same. This implies that
the sets {εkmn} and {δkmn} may be identified by some homeomorphism h : (R, 0)→ (R, 0)
with h(εkmn) = δkmn.

In more detail, the homeomorphism h is defined in the following way. We put h(0) = 0
and h|ε<0 = id, and for ε > 0, we take any homeomorphism that satisfies h(εkmn) = δkmn.
We will need the following lemma.

Lemma 3. In assumptions of Theorem 6 part 2, for a homeomorphism h : (R, 0)→ (R, 0)
constructed above and for any small positive ε > 0, the points a+

j (ε) and ∆ε(a−j (ε)) are
ordered along C+ in the same way as the corresponding points ã+

j (δ) and ∆̃δ(ã−j (δ)) on C̃+

for wδ, where δ = h(ε).

Proof. Note that if for small ε, two points a+
m(ε) and ∆ε(a−k (ε)) coincide, this implies

ε = εkmn for some n (cf. Sec. 2.5). Due to the construction of h, h(ε) = δkmn, thus two
corresponding points ã+

m(δ) and ∆̃δ(ã−k (δ)) coincide.
We must also prove that for all k1, k2,m, the condition on ε

∆ε(a−m(ε)) ∈ (a+
k1

(ε), a+
k2

(ε)) (13)

is equivalent to the condition on δ

∆̃δ(ã−m(δ)) ∈ (ã+
k1

(δ), ã+
k2

(δ)) (14)

for small ε and δ = h(ε) (on the right-hand side, we have oriented arcs of the oriented
coordinate circles). This will finish the proof of the lemma.

Proposition 1 implies that (13) is equivalent to (a−m(ε)−τ(ε) mod 1) ∈ (a+
k1

(ε), a+
k2

(ε)),
i.e.

(−τ(ε) mod 1) ∈ (τk1m(ε), τk2m(ε)) ⊂ R/Z.

Recall that τ(ε) is monotonic for small ε with τ ′(ε) → −∞ as ε → 0, and the derivatives
of τkm(ε) are bounded. So the values of ε that satisfy the last inclusion are between the
solutions εk1mn, εk2mn of the connection equation (12).

In more detail, if the arc (τk1m(ε), τk2m(ε)) of the circle does not contain zero (or,
equivalently, the segment (τk1m, τk2m) does not contain zero), (13) is equivalent to −τ(ε) +
n ∈ (τk1m(ε), τk2m(ε)) for some n, and the solutions are ε ∈ (εk1mn, εk2mn) for some n. If the
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segment (τk1m, τk2m) contains zero, (13) is equivalent to −τ(ε) + n ∈ (τk1m(ε), τk2m(ε) + 1)
for some n, i.e. to ε ∈

⋃
n(εk1mn, εk2m(n−1)).

Finally, for small ε, the condition (13) is equivalent to

ε ∈
⋃
n

(εk1mn, εk2mn) if 0 ∈ (τk1m, τk2m)

ε ∈
⋃
n

(εk1mn, εk2m(n−1)) if 0 /∈ (τk1m, τk2m)

Similarly, the condition (14) is equivalent to

δ ∈
⋃
n

(δk1mn, δk2mn) if 0 ∈ (λk1m, λk2m)

δ ∈
⋃
n

(δk1mn, δk2m(n−1)) if 0 /∈ (λk1m, λk2m)

Since τkm and λkm are ordered in the same way, the construction of h above implies
that the conditions (13) and (14) are equivalent for δ = h(ε).

3.4 Construction of equivalence of V, W in the neighborhoods of parabolic
cycles

In this section, we construct a required homeomorphism conjugating vε to wh(ε) in the
neighborhoods of the parabolic cycles γ, γ̃. We will extend it to the whole sphere in the
next section.

Lemma 4. In assumptions of Theorem 6 part 2, for h constructed above and for each small
ε, there exists a homeomorphism Hmid

ε : U → Ũ such that

Hmid
ε (U ∩ l−j (ε)) = Ũ ∩ l̃−j (δ) and Hmid

ε (U ∩ l+j (ε)) = Ũ ∩ l̃+j (δ), (15)

where δ = h(ε).

Proof. For ε > 0, the parabolic cycle disappears, and both vector fields vε|U , wδ|Ũ are
conjugate to the radial vector field in the annulus 1 < r < 2. So the statement follows from
Lemma 3.

For ε = 0, we may take Hmid
ε = Ĥ|U .

For ε < 0, the parabolic cycle splits into two. Both vector fields vε|U and wδ|Ũ have two
hyperbolic cycles in U, Ũ , the outer one is attracting and the inner one is repelling; both
oriented clockwise by time orientation. We conclude that vε|U and wδ|Ũ are conjugate. It
is easy to modify the conjugacy so that it takes characteristic sets on C± to characteristic
sets on C̃±, i.e. the conditions (15) are satisfied.

3.5 Proof of Theorem 6 part 2 modulo Lemma 5 on flexibility of autho-
morphisms

Recall that v0 is topologically conjugate to w0, and the conjugacy Ĥ takes l±j to l̃±j .
Now, v0|D± is structurally stable, so vε|D± is conjugate to it. Similarly, w0|D̃± is

conjugate to wh(ε)|D̃± . Thus there exist two homeomorphisms H+
ε : D+ → D̃+ and

H−ε : D− → D̃− that conjugate vε|D± to wδ|D̃± and take l±j (ε) to l̃±j (δ), where δ = h(ε).
Now let us construct Hε.
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For ε = 0, we simply take Hε = Ĥ. Our goal for ε 6= 0 will be to agree H±ε with Hmid
ε

constructed in Lemma 4.
We will use the following lemma. Let Sep v be the union of all separatrices of v, Per v

be the union of all limit cycles of v, Sing v be the union of all singular points of v.

Lemma 5 (On flexibility of automorphisms). Let v be a smooth Morse-Smale vector field
in a closed disc D with smooth boundary. Let v be transversal to ∂D.

Then any orientation-preserving homeomorphism g : ∂D → ∂D such that g is identical
on ∂D∩Sep v extends to an orbital topological automorphism G : D → D of the vector field
v, and G|Sing v∪Per v = id.

The proof of this lemma constitutes Section 3.6 below. Here we finish the proof of
Theorem 6 modulo Lemma 5.

In order to agree H+
ε to Hmid

ε on C+, we apply this lemma to the vector field vε|D+ and
the homeomorphism g = (H+

ε )−1 ◦ Hmid
ε on C+, and get an automorphism G+ of vε|D+ .

Now H+
ε ◦G+ is a sing-equivalence of vε and wδ that takes D+ to D̃+, coincides with Hmid

ε

on C+ and conjugates vε to wh(ε) in D+ and D̃+. Similarly, we construct a homeomorphism
H−ε ◦ G− in D− that coincides with Hmid

ε on C− and conjugates vε to wh(ε). These two
homeomorphisms H±ε ◦G± and Hmid

ε glue into the sing-equivalence Hε on the whole sphere,
and the proof of Theorem 6 is complete.

3.6 Flexibility of automorphisms

This section is devoted to the proof of Lemma 5. We start with some general definitions.

Definition 15. Let v be a Morse-Smale vector field. The union of all singular points, sepa-
ratrices and limit cycles of v is called a separatrix skeleton of v. The connected components
of the complement to the separatrix skeleton are called canonical regions.

Clearly, each canonical region R has a common α- and ω-limit set; we denote them by
α(R) and ω(R). The following statement is formulated in [DLA].

Proposition 5. Any canonical region R of a C2-smooth vector field on S2 is parallel, i.e.
v|R is topologically equivalent to one of the following:

• strip flow: ∂/∂x in the strip Π := R× (0, 1);

• spiral flow: ∂/∂r in R2 \ 0, where (r, φ) are polar coordinates;

• annular flow: ∂/∂φ in R2 \ 0.

The last case does not appear for Morse-Smale vector fields. The possible shapes for
canonical regions of Morse-Smale fields are shown on Fig. 9, see also [N, Sec. 1.2]. In
particular, each strip canonical region is bounded by four or three separatrices.

Proposition 5 provides us by continuous charts in R that conjugate v to standard vector
fields. This will enable us to prove the following propositions.

Proposition 6. Let R be a strip canonical region of a Morse-Smale vector field v on the
sphere. Let T be a transversal to v that intersects all trajectories of v|R. Let endpoints of
T be located on separatrices that bound R.

Then given a homeomorphism g : T → T of a transversal that fixes endpoints of T , we
may extend it to an automorphism G : R→ R of v such that G|∂R = id.
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Figure 9: Possible shapes of strip and spiral canonical regions for Morse-Smale vector fields.
Each limit cycle may be replaced by a singular point

Proposition 7. Let R be a spiral canonical region of a Morse-Smale vector field v on the
sphere. Let T be a closed transversal to v that intersects all trajectories of v|R.

Then given an orientation-preserving homeomorphism g : T → T of a transversal, we
may extend it to an automorphism G : R→ R of v such that G|∂R = id.

The idea of their proofs is to construct the extension G in the canonical charts provided
by Proposition 5. We may take G that preserves the trajectories of v in the canonical chart
and coincides with g on T . The continuity of G on ∂R requires a little more caution.

Now we prove Lemma 5 modulo these propositions.

The proof of Lemma 5. Without loss of generality, assume that on ∂D, the vector field v
points inside D. For v|D, we are going to refer to the general statements that hold for
vector fields on the sphere. So we will extend v smoothly to the complement of D by a
radial vector field having one hyperbolic source in S2 \D. The vector field v̂ thus obtained
is Morse-Smale.

Define the required homeomorphism G to be identical on the separatrix skeleton of v̂. If
a canonical region R of v̂ does not intersect ∂D, define G|R := id. If ∂D intersects several
strip canonical regions, the map G in all such regions is provided by Proposition 6 above.
Finally, if there exists a spiral canonical region R that contains the whole ∂D, the map G
is provided by Proposition 7.

We conclude by proving Propositions 6 and 7.

Proof of Proposition 6. We will need a continuous chart ψ : Π → R that conjugates ∂/∂x
to v (as the one provided by Proposition 5), but with the following additional properties.

• ψ takes the vertical open segment T̃ = {0} × (0, 1) ⊂ Π to T .

• ψ extends continuously to ∂Π. ψ−1 extends continuously to ψ(R×{0}) and ψ(R×{1})
(however it is possible that ψ−1 is not well-defined on ∂R, see Fig. 9d);

• The diameter of a transversal ψ({x} × (0, 1)) to v tends to zero as x→ ±∞.

To satisfy all properties, we act in the following way. Let U(α(R)) and U(ω(R)) be small
neighborhoods of α(R), ω(R). We take the chart ψ provided by Proposition 5, then shift
and rescale it on each horizontal line in Π so that it takes T̃ to T and provides a natural
parametrization on each trajectory of v in R \ U(α(R)) \ U(ω(R)). This ensures the first
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two requirements in R\U(α(R))\U(ω(R)). The set R∩U(α(R)) is a family of non-singular
trajectories of v, and it is easy to choose ψ−1 on this set so that the second requirement is
still satisfied; the same holds for R∩U(ω(R)). After all, ψ satisfies the first and the second
requirement.

Now if both α(R) and ω(R) are singular points, the third requirement is automatically
satisfied: ψ({x} × (0, 1)) is in a small neighborhood of α(R) or ω(R) for x close to ±∞, so
has a small diameter. If α(R) is a limit cycle c, we further modify ψ in U(α(R)). Namely,
we choose a continuous family of transversals to v: one transversal at each point of c. Then
we modify ψ−1 near c so that it takes the intersections of these transversals with R to
vertical segments in Π. We do the same in a small neighborhood of ω(R) if this set is a
limit cycle as well. Clearly, all the three requirements are satisfied after such modifications.

Now, let ĝ := ψ−1gψ be the map g in ψ-chart. Then it extends to the map Ĝ : Π→ Π
given by Ĝ(x, y) = (x, ĝ(y)); note that Ĝ preserves vertical segments in Π. Since g fixes
endpoints of T , ĝ fixes endpoints of T̂ . So Ĝ is identical on the upper and the lower border
of Π.

Let G : R → R be the map Ĝ in ψ−1-chart, i.e. G = ψĜψ−1; clearly, G|T = g. Now,
G is identical on the separatrices that bound R, due to the continuity of ψ,ψ−1 and the
corresponding property of Ĝ. Moreover, if we put G|α(R) = id,G|ω(R) = id, the map
G is still continuous. Indeed, since Ĝ preserves vertical segments in Π, the map G near
α(R), ω(R) takes transversals ψ({x} × (0, 1)) into themselves, and the diameter of these
transversals tends to 0 (see the third requirement on ψ); this implies the statement.

Finally, G|∂R = id. This finishes the proof.

Proof of Proposition 7. The proof is analogous to the proof of Proposition 6 but simpler,
because we only need the continuity of G on α(R), ω(R). Note that the vector field d/dr
in R2 \ {0} is topologically equivalent to the vector field d/dx in the strip with identified
borders Π∗ := R2/((x, y) ∼ (x, y + 2π)). We will find a continuous chart ψ : Π∗ → R that
conjugates ∂/∂x to v and has two additional properties:

• ψ takes the vertical segment T̃ = {0} × [0, 1] ⊂ Π∗ to T .

• The diameter of a transversal ψ({y = x+ n}) to v tends to zero as n→ ±∞.

As before, if α(R) and ω(R) are singular points, the second requirement is trivial. To
satisfy this requirement near a limit cycle, we choose a family of small transversals to this
cycle and require that ψ takes slanted segments {y = x+n}, n large, to these transversals.
The definition of ĝ is as before. When we extend ĝ to Ĝ, we choose Ĝ so that it preserves
horizontal lines and also preserves slanted segments {y = x + n} for large n. As before,
G = ψĜψ−1 is a continuous map in R that satisfies G|T = g. Moreover, we may extend
G continuously to α(R), ω(R) by the identity map, because the map G preserves short
transversals ψ({y = x+ n}) to v. This finishes the proof.

4 Structural stability
In this section Theorem 3, hence, Theorem 1, is proved.

4.1 Reduction to the Classification theorem.

Proposition 8. For C4-close vector fields v, w of class PC, the corresponding characteristic
pairs of sets A±(v), A±(w) are respectively close.
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This proposition is proved in the next two sections. Let us now check that two close
local PC families satisfy the assumptions of Theorem 6 part 2. This will imply Theorem 3.

Let V be an unfolding of v: V = {vε|ε ∈ (R, 0)}, v0 = v. Let w ∈ PC be so close
to v that the Sotomayor theorem is applicable: w is orbitally topologically equivalent
to v. Moreover, let v and w be so close that the corresponding pairs of characteristic
sets A±(v), A±(w) are close, see Proposition 8. Then they are equivalent in the sense of
Definition 13. Now letW be a PC-family that unfolds w. All the assumptions of Theorem 6
part 2 for the families V and W are justified. Hence, they are equivalent. Therefore, the
family V is structurally stable. Theorem 3 is proved modulo Proposition 8.

4.2 Takens theorem with a parameter

The main step in the proof of Proposition 8 is to check that canonical coordinates on the
transversal loops for close vector fields of class PC are also close. Equivalently, we should
prove that the time functions T± defined in Sec. 1.6 are close for close vector fields. It is
sufficient to check that the generators of close parabolic germs are close.

Proposition 9. Suppose that two parabolic germs are C4-close. Then their generators are
C-close. In more detail, for any parabolic germ there exists a representative P with the
following property. Let U be the domain of P . Then there exists a neighborhood V ⊂ U of
0 such that any map Q which is sufficiently C4-close to P in U has a generator C-close to
that of P in V .

Proof. First, recall the main steps of the proof of Takens Theorem (see Theorem 2), ac-
cording to [M] and [I90]. Let P (x) = x+x2 + (a+ 1)x3 + . . . be a real smooth germ. Then
P is formally equivalent to the time one shift P0 along the vector field ua:

P0 = g1
ua
, ua = x2

1− ax. (16)

The maps P and P0 have the same 3-gets at 0. Hence,

P = P0 +R, |R| ≤ C|x4| and |R′| ≤ C ′|x3| (17)

for some C,C ′ > 0. In what follows, different constants depending on the functions consid-
ered are denoted by C with subscripts and superscripts. The chart

t = −1
x
− a ln x

rectifies the vector field ua and brings a neighborhood of 0 to a neighborhood of infinity.
The maps P and P0 written in the chart t are denoted by P̂ , P̂0. Clearly, P̂0 is a mere
translation by 1: P̂0(t) = t + 1. Let P̂ = P̂0 + R̂ = t + 1 + R̂. Then |R̂| < C|t−2|, see
Proposition 10 below. Let us find a map H = id+ h defined near infinity that conjugates
P̂ and P̂0. This map is found separately in two half-neighborhoods (R−,∞), (R+,∞). Let
us find it in (R+,∞). Note that h satisfies P̂0 ◦ (id+ h) = (id+ h) ◦ P̂ , which implies the
Abel equation on h:

h = h ◦ P̂ + R̂.

The solution of this equation in (R+,∞) has the form:

h+ =
∞∑
k=0

R̂ ◦ P̂ k. (18)
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Due to Proposition 11 below, this series converges on R+ near infinity; moreover, if C, C ′
in (17) are small, then h is C1-small. Finally, we have found the desired generator u of P .
In the coordinate H = id+h+, this generator is a unit vector field e. In the coordinate t, it
equals (H−1)∗e. In the initial coordinate, it equals u = (t−1 ◦H−1)∗e. Together with (18),
this provides the desired formula for u in (R+, 0).

A similar formula holds in (R−, 0) with the only difference that in this case, the solution
of the Abel equation is

h = h− = −
∞∑
k=1

R̂ ◦ P̂−k. (19)

We stop here and do not check the assertion of Theorem 2 that u is infinitely smooth.
See [M] and [I90] for the rest of the proof of Takens theorem.

Proposition 10. In the above assumptions, |R̂| < C1|t−2| and |R̂′| ≤ C ′1|t−3|; if the
constants C,C ′ in (17) are small, then C1, C

′
1 are also small.

Proof. By definition of R̂, R̂ = P̂ − P̂0. So

R̂ ◦ t = t ◦ P − t ◦ P0 = t ◦ (P0 +R)− t ◦ P0.

Hence, for some θ ∈ [0, 1],

|R̂(t(x))| ≤ t′ ◦ (P0 + θR) · |R(x)| ≤ C̃x−2 · x4 = C̃x2 < C1t
−2.

Moreover, by the same argument, for some θ ∈ [0, 1],∣∣∣∣ ddxR̂ ◦ t
∣∣∣∣ =

∣∣t′ ◦ (P0 +R) · (P ′0 +R′)− t′ ◦ (P0) · P ′0
∣∣ ≤ ∣∣t′′ ◦ (P0 + θR) ·R · P ′0

∣∣+∣∣t′ ◦ (P0 +R) ·R′
∣∣ ≤ C̃1|x|;

dependence on x in the left and the middle part of the display is skipped for brevity. Hence,

| d
dt
R̂| ≤

| ddxR̂ ◦ t|
|t′(x)| ≤ C̃

′
1|x|

3 ≤ C ′1|t|
−3. (20)

Note that if C, C ′ in (17) are small, then C1 and C ′1 are also small.

Proposition 11. In the above assumptions, the series for h+ converges in (R,+∞); if the
constants C, C ′ in (17) are small, then h+ is small in C1 metric.

Proof. The series (18) converges because R̂ decreases as C1t
−2, and P̂ k increases as an

arithmetic progression. Moreover, for small C, C ′ in (17), C1 is also small, thus h is small
in C metric near infinity.

To estimate h′, note that h′ =
∑

(R̂′ ◦ P̂ k) · (P̂ k)′. The function R̂′ is small by (20). The
sequence P̂ k increases as an arithmetic progression. It remains to prove that the sequence
(P̂ k)′ is bounded; this will imply that h′ is small in C-metric.

Let us estimate P̂ k(t)′ for t ∈ R+ large. This derivative is a product of values of the
function P̂ = 1 + R̂′ along the first k points of the orbit of t under the map P̂ . This orbit
grows as an arithmetic progression. The logarithm of the product mentioned above is no
greater than the sum c

∑∞
k=1 |R̂′ ◦ P̂ k(t)|. By (20), this sum is uniformly bounded in a

neighborhood of infinity. Hence, the sequence (P̂ k)′ is uniformly bounded for large t as
required.
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Let us now prove Proposition 9. Takens theorem implies that the normalizing chart
that conjugates P and P0 is infinitely smooth. From now on, we switch to this chart; this
reduces the general case to the case when P = g1

ua
for some a, and Q is C4-close to it.

Put Q = Q0 + R where Q0 = g1
ub

for some b. Since a = P (3)(0)
6 − 1, b = Q(3)(0)

6 − 1, we
conclude that a and b are close. As above, |R| ≤ Cx4, |R′| ≤ C ′|x3|; moreover, C,C ′ are
small, because P − P0 is zero and Q,Q0 are C4-close to P, P0.

Now, let us repeat the arguments from the proof of Takens theorem for Q = Q0 + R.
Let tb = − 1

x + b ln x be the rectifying chart for the vector field ub, and Q̂ = t + 1 + R̂ be
the map Q written in this chart. Let h be the map given by (18) and (19) for this R̂; put
H = id + h. Then the generator uQ for the map Q is given by uQ = (t−1

b H−1)∗e. Due to
Proposition 11, h is C1-small, thus H is C1-close to identity; so uQ is close to (t−1

b )∗e = ub.
Finally, ub is close to ua because a and b are close as we showed above. So uQ is close to
ua. This proves Proposition 9.

4.3 Proximity of the characteristic sets

Here we complete the proof of Proposition 8.
Let v and w be two close vector fields of class PC, γ and γ̃ be their (close) parabolic

cycles, and C± be their common transversal loops that separate the parabolic cycles from
the rest of the sphere. The vector fields v and w are orbitally topologically equivalent as
explained above. Let Em, Ẽm, m = 1, . . . ,M and Ik, Ĩk, k = 1, ...,K be the saddles of v
and w respectively, whose separatrices wind to γ and γ̃ as described above; Em and Ẽm,
Ik and Ĩk are close to each other.

Then the intersection points of the separatrices of these saddles with the transversal
loops C± are close. But we have to prove that these points are close on the coordinate circles
with the canonical coordinates ϕ±0 , ϕ̃

±
0 . The latter statement follows from Proposition 9.

This proves Proposition 8, and completes the proof of the Structural stability Theorems 1
and 3.

5 Bifurcation support vs large bifurcation support
In [AAIS], Arnold introduced a notion of a bifurcation support. Begin with the quotation
from Arnold.

Although even local bifurcations in high codimensions (at least three) on a disc are not
fully investigated, it is natural to discuss nonlocal bifurcations in multiparameter families
of vector fields on a two-dimensional sphere. For their description, it is necessary to single
out the set of trajectories defining perestroikas in these families.

Definition 16. A finite subset of the phase space is said to support a bifurcation if there
exists an arbitrarily small neighborhood of this subset and a neighborhood of the bifurcation
values of the parameter (depending on it) such that, outside this neighborhood of the subset,
the deformation (at values of the parameter from the second neighborhood ) is topologically
trivial.

Definition 17. The bifurcation support of a bifurcation is the union of all minimal sets
supporting a bifurcation (“minimal” means not containing a proper subset that supports a
bifurcation).
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Figure 10: Non-equivalent pairs of characteristic sets on coordinate circles

Definition 18. Two deformations of vector fields with bifurcation supports Σ1 and Σ2
are said to be equivalent on their supports if there exist arbitrarily small neighborhoods
of the supports, and neighborhoods of the bifurcation values of the parameters depending
on them, such that the restrictions of the families to these neighborhoods of the supports
are topologically equivalent, or weakly equivalent, over these neighborhoods of bifurcation
values.

The quotation ends here. The following theorem shows that the bifurcation support is
insufficient for the description of the bifurcations.

Theorem 8. There exist two orbitally topologically equivalent vector fields of class PC,
whose generic unfoldings in one-parameter families are equivalent on their supports, but
not sing-equivalent on the whole sphere.

This is an improved version of Theorem 5.

Proof. Consider a vector field v of class PC. A bifurcation carrier is an arbitrary point on
the parabolic cycle γ of this field. The bifurcation support is the cycle γ itself. Under the
unfolding of v, the cycle γ splits in two on one side of the critical value of the parameter,
and vanishes on the other side. For any two vector fields of class PC their deformations
are equivalent on their supports.

Consider now two vector fields of class PC with non-equivalent pairs of characteristic
sets, see Figure 10 for example. By Theorem 6, the unfoldings of these fields are not
sing-equivalent.

This proves Theorem 8. Simultaneously Theorem 5 is proved.
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