
Germs of bifurcation diagrams and SN - SN families

Yu. Ilyashenko

November 26, 2020

Yu. Ilyashenko, National Research University Higher School of Economics, Faculty
of Mathematics, 6 Usacheva st., 119048 Moscow, Russian Federation; Independent
University of Moscow, 11 Bol’shoy Vlasievskiy st., 119034 Moscow, Russian Federation,
yulijs@gmail.com

Abstract

We study the geometry of the bifurcation diagrams of the families of vector
fields in the plane. Countable number of pairwise non-equivalent germs of bifur-
cation diagrams in the two parameter families is constructed. Before this effect
was discovered for three parameters only. Our example is related with so called
SN - SN families: unfoldings of vector fields with one saddle-node singular point
and one saddle-node cycle. We prove structural stability of this family. By the
way, the tools that may be helpful in the proof of structural stability of other
generic two-parameter families are developed. One of these tools is the embed-
ding theorem for saddle-node families depending on the parameter. It is proved
at the end of the paper.

The paper is a part of a vast program of development of the global bifur-
cation theory in the plane. This program was proposed by Arnold in 1985
as a series of conjectures that were later disproved by the author and his
students. Yet the questions that Arnold stated directed the development
of the program. One of the questions related to the diversity of the bifurca-
tion diagrams is solved in the present paper for the generic two-parameter
families. Another question is related to structural stability of generic two-
parameter families. The proof of this stability is a large project. The first
steps in this proof are made in the present paper.

1

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
30

74
2



1 Introduction: definitions and main results

1.1 Arnold’s conjecture

"For a generic l-parameter family of vector fields on S2:
< · · · >

Any bifurcation diagram is (locally) homeomorphic to one of a finite number (de-
pending only upon l) of generic examples < · · · >", [AAIS], Chapter 3, Section 2.8.

More formal statement of the Arnold’s conjecture is:
For any l germs of the bifurcation diagrams that may occur in generic l-parameter

families are homeomorphic to a finite number of germs of sets in Rl.
Bifurcation diagrams are subsets of the parameter spaces; their germs are simply

germs of sets.
The definition of bifurcation diagram is not specified here; [AAIS] and [A] contain

two definitions that are not equivalent. We call these two kinds of bifurcation diagrams
coloured and simple.

1.2 Coloured bifurcation diagrams

"Consider a family of vector fields v(·, ε). Topological orbital equivalence (or weak
equivalence) defines a partition of the parameter space into classes. This partition is
called the bifurcation diagram of the family" [AAIS], Chapter 1, Section 1.7.

These classes include open subsets that correspond to structurally stable vector
fields. To make the definition of bifurcation diagram closer to the next one, we delete
these classes, and come to the following definition.

Definition 1. Coloured bifurcation diagram of a local family of vector fields (whose base
is a germ (Rk, 0)) is the set of all the parameter values that correspond to structurally
unstable vector fields in this family, together with the partition of this set into classes;
each class consists of parameter values corresponding to orbitally topological equivalent
vector fields.

One may imagine that each class has its own colour; from here the name.

1.3 Simple bifurcation diagrams

“ · · · in sufficiently good cases the bifurcation set in function space has the structure of
a local direct product of its section by a finite dimensional subspace (transversal to the
stratum of the bifurcation set to which the point being studied belongs) and an infinite
dimensional manifold of finite codimension (equal to the codimension of the stratum
and the dimension of the cross-section), along which “nothing essential changes.
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In this case the generic family with finitely many parameters is also a transversal
section of the indicated stratum. The bifurcation set in the function space leaves a trace
(the primage) in the parameter space called the bifurcation diagram of the family.” [A],
Section 4.5.

This gives rise to a definition:

Definition 2. Bifurcation diagram in a generic finite-parameter family is the set of
all parameter values that correspond to structurally unstable vector fields.

This definition is obviously formally non-equivalent to the previous one. The fol-
lowing theorem shows that non-equivalence is not only formal.

1.4 Non-equivalence

Families that we consider are semi-local and semi-global. They are local in the pra-
rameter: the base is a germ of Rk at zero. They are global in the phase variable. For
such families we use a term glocal.

Theorem 1. There exists an open set in the space of pairs of one-parameter glocal
families of vector fields on S2 such that two families from any pair have the same
simple but different coloured bifurcation diagrams.

This means that there exists a homeomorphism of (R, 0) to (R, 0) that brings the
simple bifurcation diagram of one family from the pair to that of another one, but
there is no homeomorphism that moreover respects the partition into the equivalence
classes.

1.5 Previously known counterexample to Arnolds’ conjecture:
ensemble "lips"

At the beginning of 90’s my student Anna Kotova listed all the polycycles that may
occur in 2 and 3-parameter glocal families. This resulted in "Kotova zoo" [KS]. One
of the species in the zoo was an ensemble "lips". It is formed by two saddle-nodes
of multiplicity 2 whose parabolic sectors are turned towards each other, and whose
separatrices of the hyperbolic sectors coincide. This ensemble consists of a continuous
set of polycycles.

In [KS] it is proved that for any k there exists a generic 3-parameter glocal family
that unfolds the ensemble lips such that under the bifurcation of the ensemble at least
k limit cycles may be born. As a consequence, there exists a countable set of three-
parameter glocal families whose germs of coloured bifurcation diagrams are pairwise
not topologically equivalent.
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Figure 1: Unpeturbed SN - SN vector field

1.6 A counterexample to Arnold’s conjecture for two-
parameter families.

The first main result of this paper is

Theorem 2. There exists a countable number of two-parameter glocal families whose
germs of simple bifurcation diagrams are pairwise topologically non-equivalent.

Two parameter families in the theorem are of class SN-SN described in the following
way. These families are unfoldings of codimension two degeneracies; namely, of vector
fields that have one saddle-node singular point and one saddle-node limit cycle, both
of multiplicity two; from here the name. The set of all generic unfoldings of such vector
fields in denoted by SN2. For any n let us now define a vector field of class SN2

n. This
is a vector field with the following properties:

1. It is of class SN2; let N be the saddle-node singular point, and γ be the saddle-
node limit cycle of this field.

2. The unstable separatrix of the hyperbolic sectors of P winds towards γ from
outside in the positive time, see Fig. 1.

3. There are exactly n hyperbolic saddles, such that exactly one separatrix of each
saddle enters the parabolic sector of N .
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4. There is exactly one hyperbolic saddle inside γ, whose one stable separatrix winds
to γ in the negative time.

5. The vector field has no other non-hyperbolic singular points or limit cycles, nei-
ther separatix connections.

Yu. Kudryashov noticed that a simpler class of families that demonstrates Theo-
rem 2 is a class of unfoldings of vector fields v with the following properties:

• v has one saddle - node and a mutual separatrix of the hyperbolic sectors of this
saddle-node and a hyperbolic saddle;

• n separatrices of hyperbolic saddles enter the parabolic sector of this saddle-node.

The bifurcation diagram of this unfolding is a graph with one vertex and n+ 1 edges.
The justification of this description would prove Theorem 2. We consider yet the
SN2-families. They are more interesting, and their study provides tools for future
investigations.

Other two-parameter families with an infinite series of topologically different bi-
furcation diagrams were studied by Roitenberg [R1], [R2]. He does not mention the
relation of this effect with the Arnold’s conjecture, and does not state explicitly the
analog of Theorem 2. Unfortunately, his texts are not widely spread. But his results
are definite prototypes of Theorem 2.

1.7 Structural stability

The second main result of this paper is

Theorem 3. Generic families of class SN2
n are structurally stable for any n.

This theorem heavily relies upon the concept of the large bifurcation support (LBS)
introduced in [GI], and on the main result of that paper.

1.8 Continuum of pairwise different coloured bifurcation dia-
grams

Not only countable, but a continuous set of pairwise non-homeomorphic coloured bi-
furcation diagrams exists; it occurs not in two, but in three-parameter families. These
families are introduced in [IKS] and called families of class TH. Their construction
is recalled below in Section 4. Here we recall that vector fields of class TH have a
polycycle with two vertices, both hyperbolic saddles, with the characteristic values λ
and µ.
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Theorem 4. Generic unfoldings of two vector fields of class TH with different values
of the ratio lnλ

lnµ
have non-equivalent germs of colored bifurcation diagrams.

As the set of values of the ratio lnλ
lnµ

is continuous, this immediately implies that a
continuous set of pairwise non-homeomorphic colored bifurcation diagrams exists.

1.9 Embedding theorem for parabolic germs with a parameter

One of the main tools of our investigation is a parameter version of the embedding
theorem from [IYa].

Theorem 5. Consider a C∞ unfolding F of a parabolic germ of a diffeomorpism of
(R, 0) of multiplicity 2 depending on k parameters. It is smooth equivalent to a C∞
local family

x→ x+ (x2 + ε)(1 + f(x, ε, λ)) (1)

where ε ∈ (R, 0), λ ∈ (Rk−1, 0), f(0) = 0. Then in the domain ε ≥ 0 this family is C∞
equivalent to an embeddable one, namely to a time one phase flow transformation g1

w

of a vector field w = wε,λ that determines an equation on (R, 0).

Ẋ = wε,λ(X), wε,λ(X) =
X2 + ε

1 + a(ε, λ)X
. (2)

This theorem for k = 1 (no λ at all) is proved in [IYa]. For arbitrary k it is proved
in Section 6. X is called the normalizing coordinate for F .

1.10 Conjectures

Conjecture 1. There exists an open set of 5-parameter families whose simple bifur-
cation diagrams have numeric moduli.

Conjecture 2. If a coloured bifurcation diagram of a generic family is structurally
stable (in an obvious sense) then the family itself is structurally stable.

1.11 Plan of the paper

The paper is organized as follows. In Section 2 we prove Theorem 1. In Section 3 we
prove Theorem 2. In Section 5 we prove Theorem 3. In Section 4 we prove Theorem 4.
In Section 6 we prove Theorem 5. In Section 7 we give a sketch of the proof of
Conjecture 1.
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Figure 2: The unperturbed vector field of a PC family

2 Non-equivalence
Here the simplest example of a class of one-parameter families with homeomorphic
simple and non-homeomorphic coloured bifurcation diagrams is given.

This section heavily relies upon the papers [MP] and [GIS].

Recall that vector fields of class PC are vector fields with one parabolic cycle of
multiplicity two and no other degeneracies. That is, the vector field has only hyperbolic
singular points, only hyperbolic limit cycles except for one, and no saddle connections.

Consider a class of vector fields v ∈ PC such that any vector field from this class
has a semistable (parabolic) cycle γ, two saddles E1 and E2 outside γ and two saddle
I1, I2 inside γ. Suppose that one separatrix of each saddle E1, E2 winds towards γ in
the positive time (denote these separatrices by u1, u2 as they are unstable). Suppose
that one separatrix of each saddle I1, I2 winds toward γ in the negative time (denote
these separatrices by s1, s2 as they are stable).

Let V be a one-parameter unfolding of v ∈ PC, ε ∈ (R, 0) be the parameter of the
family such that 0 corresponds to v. Suppose that for ε > 0 γ vanishes.

Let Γ be a cross-section to γ. Let Uj ∈ uj ∩Γ (choose and fix one intersection point
out of a countable number), Sj = sj ∩ Γ, j = 1, 2, see Fig 2.

Suppose that the other unstable separatix of the saddles E1, I1 that does not wind
to γ tends to an attracting point, and the other unstable separatix of the saddles E2, I2

7

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
30

74
2



tends to limit cycles. Then vector fields of the family having saddle connections EiIj
and Ei′Ij′ with (i, j) 6= (i′, j′) are orbitally topologically non-equivalent.

In [MP] and [GIS] it is proved that as ε↘ 0, sparkling saddle connections occur in
the family V . The simple bifurcation diagram of this family is a sequence convergent
to 0 together with the limit point 0. The coloured bifurcation diagram adds colours to
the points of the simple bifurcation diagram:

the points corresponding to connection EiIj are:

red for (i, j) = (1, 1)

blue for (i, j) = (1, 2)

yellow for (i, j) = (2, 1)

green for (i, j) = (2, 2)

In [MP], [GIS] it is proved that for ε small the colours go in a cyclic order. A cyclic set on
a line may be naturally projected to a set on a circle. If we glue together two subsequent
red points then a segment between them will become a circle with four points painted
in different colours. There is no orientation preserving homeomorphism of a circle that
changes the order of four coloured points on it. All the possible orders of the four
coloured points on a circle may be realized in a generic PC family. The corresponding
coloured bifurcation diagrams are not homeomorphic. This proves Theorem 1.

3 Simple bifurcation diagrams of SN-SN families
In this section Theorem 2 is proved.

3.1 The simple bifurcation diagram of the SN 2
n family

This diagram is shown on Fig 3. The corresponding phase portraits are shown on
Fig. 4.

The coordinates in the parameter space are chosen in a special way.
First, ε is responsible for the bifurcation of the non-hyperbolic cycle: for ε = 0 the

semistable cycle persists, for ε > 0 it vanishes; for ε < 0 it splits into two hyperbolic
cycles.

Second, λ is responsible for the bifurcation of the saddle-node singular point: for
λ = 0 the saddle-node point persists, for λ > 0 it vanishes, for λ < 0 it splits into two
hyperbolic singular points: a saddle and a node.

Let V be an SN2 family.
By Theorem 5, the family F of the parameter depending Poincare maps of the

semistable cycle γ for the family V is smooth equivalent to a family (2) for k = 2.
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Figure 3: Simple bifurcation diagram for an SN2
2 family

Figure 4: Phase portraits of the vector fields of the family SN2
2
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Analogously, the family V near the point N is orbitally smooth equivalent to a family
that generates an equation

ẋ =
x2 + λ

1 + a(ε, λ)x
(3)

ẏ = −y.

For ε = λ = 0, x(P ) = y(N) = 0
When λ = 0, the vector field (3) has a separatrix s0(ε, 0) of the hyperbolic sectors:

y = 0, x ≥ 0. In the original coordinates, this separatrix depends smoothly on the
parameter.

Consider a subfamilyW of V corresponding to λ = 0 (the saddle-node N = N(ε, 0)
persists), ε > 0 (the semistable cycle vanishes). Vector fields of subfamily W have
sparking saddle connections between the saddle-node N(εm, 0) and the saddle I(εm, 0).
These connections correspond to a sequence (εm, 0). This and the following statements
is proved in Section 3.2.

When λ < 0, the saddle-node N(ε, 0) is split into a saddle S0(ε, λ) and a node
N0(ε, λ). The saddle S0(ε, λ) has an unstable separatrix s0(ε, λ) continuous in ε, λ
that tends to s0(ε, 0) as λ → 0. This separatrix forms sparkling saddle connections
with the saddle I(ε, λ). For any m, these connections correspond to parameter values
on a graph of a function ε = ϕm(λ), λ ≤ 0, ϕm(0) = εm.

When λ > 0, the saddle-node N(εm, 0) vanishes, and the separatrices of the saddles
S1, . . . , Sn break through to the cross-section Γ. These separatrices form sparkling
saddle connections with the saddle I(ε, λ). For any m and j ∈ {1, . . . ,m} connection
between Sj and I corresponds to parameter values on a graph of a function ε =
ϕm,j(λ); ϕm,j(λ)→ εm as λ→ 0.

Thus the bifurcation diagram of V near the point (εm, 0) is homeomorphic to a
graph with one vertex and n + 1 edges. Thus the number n is a topological invariant
of the simple bifurcation diagram of the family V . This proves Theorem 2 modulo
justification below.

3.2 Justifications

3.2.1 Sparkling saddle connections between the saddle-node and the inte-
rior saddle

Consider the subfamily W introduced above: λ = 0, ε > 0. Vector fields of this
family have a saddle-node N(ε, 0) with a separatrix of its hyperbolic sectors denoted
by s0(ε, 0).

Let us choose some cross-sections of the vector field v0,0 and analyse some holonomy
maps between them.
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Let Γ+ and Γ− be two segments given in coordinates x, y near N , see (3), by the
equations:

Γ− = {(−δ, y)||y| ≤ δ},
Γ+ = {(δ, y)||y| ≤ δ},

δ > 0 small. The map from Γ+ to Γ− along the orbits of the vector field vε,λ is defined
for λ > 0 (when the saddle-node vanishes) and has the form:

∆ε,λ : y 7→ C(ε, λ)y,

C(ε, λ)→ 0 as λ↘ 0 uniformly in ε.
Let Γ be a cross-section to the cycle γ, and Pε,λ be the Poincare map of γ defined

near the point O = γ ∩ Γ for all the small values of ε, λ. By Theorem 5, there exists a
normalizing coordinate X = Xε,λ on Γ (depending on the parameters ε, λ) such that
for ε ≥ 0, when the cycle γ persists or vanishes,

Pε,λ = g1
wε,λ

, wε,λ =
X2 + ε

1 + b(ε, λ)X
.

Let Tε,λ be the "time distance" on Γ determined by the vector field wε,λ:

Tε,λ(a, b) =

∫ X(b)

X(a)

dX

wε,λ(X)
. (4)

For a, b on one and the same side of O, this function is defined for all ε ≤ 0; for a, b
on different sides of 0, this function is well defined for ε > 0, and tends to infinity as
ε↘ 0 uniformly in λ.

Let B(ε, 0) be the intersection of the separatrix s0(ε, 0) with Γ−. Let Qε,λ : Γ− → Γ
be the holonomy map along the orbits of vε,λ, defined in a neighborhood of B(0, 0). let
C(ε, 0) = Qε,0(B(ε, 0)).

Let D(ε, λ) be a smoothly depending on the parameters intersection point of Γ with
the separatrix of the saddle I(ε, λ) that winds towards γ in the negative time. There
is countably many such points; we choose and fix one, no matter what.

Sparkling saddle connections between N(ε, 0) and I(ε, 0) occur when

D(ε, 0) = Pm
ε,0(C(ε, 0)). (5)

Let
ξ(ε, 0) = Xε,0(D(ε, 0)),

ψ(ε, 0) = Xε,0(C(ε, 0)).

Equation (5) is equivalent to

t(ε) := T (ξ(ε, 0), ψ(ε, 0), ε, 0) = m. (6)

The function t monotonically tends to plus infinity as ε ↘ 0. Then equation (6) has
exactly one solution εm for any m sufficiently large. This implies existence of sparkling
saddle connections between N(εm, 0) and I(εm, 0).
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3.2.2 Sparkling saddle connections between the saddle generated by the
split saddle-node and the interior saddle

For λ < 0, the saddle-node N is split to a saddle S0(ε, λ) and a node, still defined by
N(ε, λ). Note that for λ ↗ 0, N(ε, λ) → N(ε, 0), S0(ε, λ) → N(ε, 0). The saddle
S0(ε, λ) has a separatrix s0(ε, λ), defined for λ > 0. In the normalizing coordinates
(x, y) it is given by the equation y = 0.

Let
B(ε, λ) = s0(ε, λ) ∩ Γ−, C(ε, λ) = Q(B(ε, λ)).

Sparkling saddle connections between the saddles S0(ε, λ) and I(ε, λ), λ < 0, occur
when

D(ε, λ) = Pm
ε,λ(C(ε, λ)). (7)

Let
ψ(ε, λ) = X(C(ε, λ)), λ > 0.

Note that ψε, λ→ ψ(ε, 0) when λ↗ 0. Equation (7) is equivalent to

t(ε, λ) := T (ξ(ε, λ), ψ(ε, λ), ε, λ) = m. (8)

The same arguments as before prove that the equation (8) for a fixed λ has exactly
one solution ε = ϕm(λ). it is continuous in λ, because t is, and ϕm(λ)→ εm as λ↗ 0.

3.2.3 Sparkling saddle connections between the interior and exterior sad-
dles

For λ > 0, the saddle-node N vanishes, and the separatices s1, . . . , sn of the exterior
saddles S1, . . . , Sn, that entered the saddle-node for λ = 0, now reach Γ−. Let

Aj(ε, λ) = sj(ε, λ) ∩ Γ+.

Bj(ε, λ) = ∆ε,λ(Aj(ε, λ)) ∈ Γ−.

We have:
y(Bj(ε, λ)) = c(ε, λ)y(Aj(ε, λ)), c(ε, λ)→ 0 as λ↘ 0.

The points Aj and Bj depend smoothly on ε, λ, where defined.
Sparkling saddle connections between the saddles Sjε, λ and Iε, λ, λ > 0, occur

when
D(ε, λ) = Pm

ε,λ(Cj(ε, λ)). (9)

The same arguments as before prove that for m large enough and for any small λ fixed,
this equation has a unique solution

ε = ϕm,j(λ),
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Figure 5: Unpeturbed vector field of class T

and
ϕm,λ(λ)→ εm as λ↘ 0.

This completes the justification of the description of the bifurcation diagram for the
family Vn, and proves Theorem 2.

4 Continuum of pairwise different coloured bifurca-
tion diagrams

Here we prove Theorem 4.

Vector fields v of class T are defined as follows [IKS].
The vector field v has a polycyle γ formed by two saddles L and M and their

saddle connections. Two connections between L and M for a polycycle "heart", and
two separatrices of L from a saddle loop l. The characteristic numbers of L and M are
denoted by λ and µ respectively and satisfy the following conditions: λ < 1, λ2µ > 1.
There are two saddles: E outside γ and I inside γ. One separatix of E winds towards
γ, and one separatix of I winds towards l in the negative time, see Fig. 5. This and
the next figure are borrowed from [IKS]. Other assumptions on the class T that are
not essential for now are listed in [IKS].

Generic 3-parameter unfoldings of the vector fields of class T are families of class
TH.

Any family V of class TH has a subfamily E for which the polycycle "heart" is
preserved, and the loop l is broken for ε 6= 0, where ε is a parameter of the subfamily
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Figure 6: Perturbed vector field of class T that belongs to the subfamily E

E . Denote by vε vector field of the family E corresponding to the parameter value ε.
There are two sequences εn and im that monotonically tend to 0 and have the following
property: vector field vεn has a sparkling saddle connection between E and L; vector
field vim has a sparkling saddle connection between L and I. Both saddle connections
are shown at Figure 6. In fact, they should not occur simultaneously; they are shown
on the same phase portrait for simplicity. The relative density of two sequences (εn)
and (im) equals ν = lnλ−1

lnλ2µ
.

The sequence of points (εn) ⊂ E corresponds to a separate class of orbitally topo-
logically equivalent vector fields of the family V .

Indeed, vector fields of this class are not orbitally topologically equivalent to any
other field of the family: only vector fields of this class have the following three saddle
connections: two between L andM , and one between E and L. On the other hand, any
two vector fields of this class are topologically equivalent to each other: the equivalence
is produced by an appropriate Dhen twist.

Moreover, no other vector field from V is equivalent to a vector field from E : the
latter fields are the only ones that have the polycycle "heart" unbroken.

So, the homeomorphism between two coloured bifurcation diagrams of the families
of class TH should respect these classes; it exists therefore only if the ratio ν is the
same for both families. This proves Theorem 4.

These arguments fail when we replace coloured bifurcation diagrams by simple ones.
It is unclear whether the families of class TH give rise to a continuous set of pairwise
non-equivalent simple bifurcation diagrams.
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5 Structural stability of SN - SN families
In [IKS] structurally unstable three-parameter families of vector fields on S2 where
discovered. A conjecture from [IKS] claims that all the generic 2-parameter families
are structurally stable. The way to prove this conjecture is to classify generic two
parameter families and to prove structural stability for every class. Theorem 3 is a
first step in this direction.

5.1 Moderate equivalence

Families of class SN2
n may have zillions of different phase portraits of the unperturbed

vector field v0: many hyperbolic limit cycles and singular points may be added to the
elements described in the definition of the SN − SN families.

The main theorem of [GI] excluded the influence of these additional points and
cycles. In order to state it, we need some definitions.

Definition 3. Two families V = {vε} and W = {wδ} defined on B × S2 and B′ ×
S2 respectively, B and B′ are k-balls with a marked point 0 are moderate equivalent
provided that there exists a map

H : B × S2 → B′ × S2, (ε, x) 7→ (h(ε), Hε(x)),

where h : B → B′ is a homeomorphism , h(0) = 0, Hε is a homeomorphism S2 →
S2 that brings the phase portrait of vε to that of wh(ε), preserves orientation, and is
continuous in ε, x on the set

S(v0) ∪ ∂(PerV ∪ SepV ) ∩ {ε = 0}. (10)

Moreover, H−1 is continuous on the set

S(w0) ∪ ∂(PerW ∪ SepW ) ∩ {δ = 0} (11)

Here S(v) is the separatrix sceleton of a vector field v; Per V and Sep V are unions of
all the cycles and separatrices of the vector fields of the family V .

A local version of moderate equivalence (a moderate equivalence in neighborhoods
of given closed invariant subsets) is needed. We will apply this version to neighborhoods
of large bifurcation supports.

Definition 4. Two local families of vector fields on S2, V = {vε, ε ∈ (B, 0)} and
W = {wε, ε ∈ (B′, 0)}, are moderately equivalent in neighborhoods of closed sets
Z1, Z2 ⊂ S2 if

1. Z1 is v0-invariant, and Z2 is w0-invariant;
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2. There exists a neighborhood U ⊃ Z1 and a map

H : (B, 0)× U → (B′, 0)× S2, (ε, x) 7→ (h(ε), Hε(x)), (12)

such that h is a homeomorphism, h(0) = 0, and for each ε ∈ (B, 0) the map
Hε : U → S2 conjugates vector fields (vε)|U and (wh(ε))|Hε(U);

3. H0(Z1) = Z2, and moreover,

4. For each neighborhood V of {ε = 0} × Z1, its image H(V ) contains some neigh-
borhood of {ε = 0} × Z2. The same holds for the inverse map H−1;

5. The map H is continuous with respect to (ε, x) on the intersection of its domain
with (10).

The map H−1 is continuous with respect to (ε, x) on the intersection of its domain
with (11).

5.2 Large bifurcation supports

Definition 5. The extra large bifurcation support ELBS(v0) of a vector field v0 on
the sphere is the union of all non-hyperbolic singular points and non-hyperbolic limit
cycles of v0, plus the closure of the set of all nonsingular points for which both α- and
ω-limit sets are interesting.

We do not need here the general definition of the interesting α and ω-limit sets.
It is sufficient to say that for the SN - SN families interesting α and ω-limit sets are
saddles, the saddle-node and the parabolic limit cycle. So

ELBS(v0) = (∪n0Sj) ∪ (∪n0uj) ∪N ∪ u0 ∪ γ ∪ s ∪ I. (13)

Definition 6. The large bifurcation support of a local family V of vector fields on the
sphere is LBS(V ) = ELBS(v0) ∩

(
Sing v0 ∪ (Per V ∪ Sep V ) ∩ {ε = 0}

)
.

The set (Per V ∪ Sep V ) ∩ {ε = 0} coincides with the ELBS(v0). Hence,

LBS(V ) = ELBS(v0).

5.3 Main theorem about the LBS

Theorem 6. [GI] Let two vector fields v0 and w0 be orbitally topologically equivalent
on S2; denote the corresponding homeomorphism by Ĥ. Let V = {vε, ε ∈ (B, 0)} ⊂
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V ect∗ S2,W = {wε, ε ∈ (B′, 0)} ⊂ V ect∗ S2 be smooth families unfolding these fields.
Suppose that there exists a neighborhood U of LBS(V ) and a map

H : (B, 0)× U → (B′, 0)× S2, H(ε, x) = (h(ε), Hε(x)),

h(0) = 0, which is a moderate equivalence of V,W in neighborhoods of
LBS(V ), LBS(W ) in the sense of Definition 4. Suppose moreover that Ĥ|U = H0.

Then the families V and W are weakly equivalent on the whole sphere; namely there
exists a map

Ĥ : (B, 0)× S2 → (B′, 0)× S2, Ĥ(ε, x) = (h(ε), Ĥε(x))

that provides a weak equivalence of the families V and W .

So, in order to prove structural stability of a family V ∈ SN2
N , it is sufficient to

prove that it is moderate equivalent to any nearby family in some neighborhood of its
large bifurcation support only.

5.4 Structural stability of coloured bifurcation diagrams

Definition 7. Two coloured germs of bifurcation diagrams are equivalent if there exists
a germ of a homeomorphism of the parameter space that brings one diagram to another
and respects the equivalence classes painted in the same colour.

Lemma 1. For a generic glocal family of class SN2
n its colour bifurcation diagram is

structurally stable.

Proof This follows from the description of the bifurcation diagrams in Section 3.1;
we skip the routine details. �

Lemma 2. Generic SN−SN glocal family is moderate equivalent to any nearby family
of the same class near its large bifurcation support.

We will construct the required moderate equivalence "by hands", with the use of a
general lemma 3 below.

5.5 Marked saddle-node families

5.5.1 Statement of the conjugacy lemma

The following lemma is stated in a more general setting than necessary for the proof
of Lemma 2.
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Consider a map with a parabolic fixed point of multiplicity two on (R, 0) and its
generic unfolding (1) (a saddle-node local family). Let C and D be two finite sets of
points on the rays (ε, λ) = 0, x < 0 and x > 0 respectively. Suppose that they satisfy
non-synchronization condition [MP]:

time distance between the points of C (in sense of (4)) are pairwise different from
those for the set D.

Lemma 3. Consider two saddle-node families

F = {fε,λ} and F̃ = {f̃ε,λ}

with the same number of parameters of the form (1). Let C = {C1 . . . , Cn} be a set
of points on [C1, f0,0(C1)] × {0, 0} with 0 < x(Cj) < x(Cj+1). Let D = {D1, . . . , Dk}
be a similar set with x(Dj) < x(Dj+1) < 0. Let ΓC be a set of smooth hypersurfaces
ΓC1 , . . . ,ΓCm in the total space x, ε, λ transversal to the line (ε, λ) = 0, ΓCj 3 Cj and
ΓD be a similar set, ΓDj 3 Dj. Let C and D satisfy the non-synchronization condition.
This family F with the subsets ΓD,ΓC of the total space distinguished is called the
marked saddle-node family. Let F̃ be another marked saddle-node family, finite sets
and sets of the hypersurfaces C̃, D̃,ΓC̃ ,ΓD̃ having the same property.

Then there exists a weak equivalence H of the families F and F̃ that brings Cj to
C̃j, (ΓCj , Cj) to (ΓC̃j , C̃j), Dj to D̃j, (ΓDj , Dj) to (ΓD̃j , D̃j). Moreover, H is continuous
at the sets C,D and at the point 0 = (0, 0, 0).

5.5.2 Intersection points of ΓC and iterated ΓD

Proof The total space of the family F is fibered over the base B = (Rk, 0):

(Rk+1, 0) = (Rk, 0)× (R, 0),

(R, 0) is the x-fiber. In turn,

B = (Rk, 0) = (Rk−1, 0)× (R, 0),

(R, 0) is the ε-fiber. LetDi(ε, λ) (Ci(ε, λ) ) be the intersection point of the hypersurface
ΓDi (ΓCi) with the x-fiber over the base point ε, λ. For any l, i, j and any λ sufficiently
small there exists ε = εl.i.j(λ) such that

f lε,λ(Di(ε, λ) = Cj(ε, λ). (14)

This means that the points Dj(ε, λ) and Cj(ε, λ), ε = el.i.j(λ), belong to the same
orbit of F .

The non-synchronization condition stated below implies that for fixed (ε, λ) there
exists no more than one value of l (may be none) such that relation (14) holds.
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Figure 7: A neighborhood of an intersection point of ΓCi and F lΓDj

Let us now start to construct the conjugacy H = (h,Hε) mentioned in the lemma.
Let us first construct the parameter change h that preserves λ:

h : (ε, λ)→ (ε̃, λ), ε̃ = h1(ε).

For any fixed λ, i, j the sequence εl,i,j(λ) is monotonic in l and decreasing. The same
holds for ε̃l,i,j(λ). Let us take h1 to be a λ-depending homeomorphism of the ε-fiber of
the base such that

h1(εl,i,j(λ)) = ε̃l,i,j(λ).

More requirements on h1 are stated below.

5.5.3 Some geometry

For the further construction of h1 we need the following geometric consideration. Let
v = vλ be the generator of Fλ. By definition, the (oriented) v− length of an arc on the
circle ε = const with the endpoints a and b oriented from a to b is the time needed for
a to come to b with the velocity v, that is

distv(a, b) =

∫ b

a

dx

v
.

For any δ > 0 and any set S ⊂ {ε > 0} let Sδ be a “tubular δ-neighborhood of S”:

Sδ = {(x, ε)|distvε(x, S ∩ ({ε} × (R, 0))) ≤ δ},
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where vε = v|{ε}×(R,0). Let
Σ = ∪iΓCi ∪l,j F lΓDj .

For a small δ to be chosen later let Σδ be the tubular δ-neighborhood of Σ. The
set Σ is a union of smooth curves. Some of them do intersect, see Figure 7. The
intersection points satisfy (14). Denote the point Cj(ε, λ) from (14) by P = Pl,i,j.
Let P+, Q+, P−, Q−, ε+ and ε−, (P+ = P+

l,i,j, Q
+ = Q+

l,i,j and so on) be defined in the
following way:

P+ = ΓCj ∩ {ε+} × (R, 0), Q+ = F lΓDj ∩ {ε+} × (R, 0), distv(P+, Q+) = 2δ,

P− = ΓCj ∩ {ε−} × (R, 0), Q− = F lΓDj ∩ {ε−} × (R, 0), distv(Q−, P−) = 2δ.

For any ε ∈ [ε−, ε+] let
Pε = Ci(ε), Q(ε) = F lDj(ε),

σ(ε) = |distv(Q(ε), P (ε))|.

This completes the geometric constructions that we need.

Proposition 1. For large l, l′ and small δ, the intervals [ε−, ε+] with different indexes
l, i, j; l′, i′, j′ are pairwise disjoint.

This proposition will be proved later.

5.5.4 Construction of h

Let us now turn back to the construction of h : (ε, λ) 7→ (h1(ε, λ), λ). Let F̃ be another
marked saddle-node family with the generator ṽ defined for ε > 0, and the sets Σ̃, Σ̃δ

(δ the same as for F !), P̃ and so on be analogous objects for F̃ ; their notations are
obtained from those for objects defined for F by adding a tilde.

Let us now define h1. By Proposition 1, any ε belongs to no more than one interval
[ε−, ε+] = [ε−l,i,j, ε

+
l,i,j]. Let h1([ε−, ε+]) = [ε̃−, ε̃+]. More precisely

h1([ε−l,i,j, ε
+
l,i,j]) = [ε̃−l,i,j, ε̃

+
l,i,j].

Let h1 on [ε−, ε+] be such that

σ(ε) = σ̃(h1(ε)).

By Proposition 1, h1 is well defined. This completes the construction of h1 on the
(countable) union of segments [ε−, ε+]. Let us extend h1 to the complement of this
union by the linear interpolation. This completes the construction of h1 for ε > 0. Let
h1(0) = 0.
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Figure 8: A fundamental domain of a marked saddle-node family

5.5.5 Construction of Hε for ε > 0

As h preserves λ, we now define the map H = (h,Hε) on each (x, ε)-plane over fixed λ.
The restriction of F to this plane is denoted by Fλ. The dependence on λ is mentioned
no more. The map h is already defined. Consider a domain Π which is a fundamental
domain for Fλ restricted to

Ω = {ε > 0} ∪ {ε ≤ 0, x >
√
−ε}.

The domain Π is a curvilinear strip bounded by a segment σ : x = x0 > 0, |ε| ≤
ε0, x0, ε0 small, and Fλ(σ). Let us glue together the points (x0, ε) ∈ σ and Fλ(x0, ε) ∈
Fλ(σ). We will get a cylinder Z and a projection π : Ω → Z = σ × S1, that brings
an orbit of Fλ into its intersection with Π, together with subsequent gluing Π → Z.
The images πΓCj ⊂ Z are graphs of smooth functions σ → S1, see Fig 8. The field
π∗v on Z tangent to the circular fibers {ε} × S1 is well defined for ε ≥ 0, because v is
F -invariant. Let Z̃, π̃ be the same objects for F̃ . The projection πΓDj is a curve that
winds around Z ∩ {ε > 0} infinitely many times and approaches the cycle {0} × S1.
The two curves πΓDj and πCj and the fibers ε = εl,i,j intersect at exactly one point
for all natural l sufficiently large.

Let us first construct Hε for ε > 0.

Definition 8. Consider two copies of S1 with a vector fields v and ṽ on them. A map
of an arc of the first circle to an arc of the second one is called a (v, ṽ)-isometry if it
brings v to ṽ. It is called (v, ṽ)-affine if it is onto and brings the vector field v to cṽ
for some c.
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The terms are motivated by the following facts: a (v, ṽ)-isometry brings the v-
distance to the ṽ-distance; a (v, ṽ)-affine map is affine with respect to the v and ṽ-
distances.

Now we can define the map Hε. Let Z+ = Z ∩ {ε > 0}, Z̃+ = Z̃ ∩ {ε > 0}. Let us
define the map Ĥ : Z+ → Z̃+, Ĥ = (h, Ĥε). The map h is already defined. Let the
map

Ĥε : π(Σδ ∩ {ε} × S1)→ π̃(Σ̃δ ∩ {h1(ε)})× S1

be a (v, ṽ) isometry. This implies that on this set Ĥε is a bijection, and

Ĥ(ΓC) = Γ̃C̃ , Ĥ(F l(ΓC)) = F̃ lΓ̃D̃ (15)

for l large. On the complement to πΣδ, the map

Ĥε : C(πΣδ) ∩ {ε} × S1 → C(πΣ̃δ) ∩ {h1(ε)} × S1

is (v, ṽ)-affine.
Thus we have defined Ĥ on Z+, hence H on Π+ = Π ∩ {ε > 0}. By the dynamics,

we extend H from Π+ to the set ε > 0 near 0 using the formula

H ◦ F = F̃ ◦H, H ◦ F−1 = F̃−1 ◦H.

Thus H is defined on the set ε > 0.

5.5.6 Construction of H0

Let us now extend H to the map H0 on the set ε = 0. Let first x > 0. Let Ĥ0 :
{0} × S1 → {0} × S1 bring the points πCj to πC̃j and be

- the (v, ṽ)-isometry from πCδ to πC̃δ;
- (v, ṽ)-affine from the compliment π[C1, f0(C1)) \ πCδ to π[C̃1, f̃0(C̃1)) \ π̃C̃δ.

Thus Ĥ : ¯̃Z
+
→ ¯̃Z

+
is continuous on C because the field v is continuous. Thus we

defined H0 on [C1, f0(C1)].
Let us extend H0 from π[C1, f0(C1)) to {ε = 0, x > 0} be dynamics.
The map H on {δ > 0} ∪ {ε = 0} × {x > 0} is continuous at C as Ĥ is.
Let us now construct H0 on {ε} × {x ≤ 0}. By (15), H(F l(ΓDj)) = F̃ l(Γ̃D̃j) for

large l. As H conjugates F and F̃ , we conclude:

H(ΓDj) = Γ̃D̃j .

Moreover, as v and ṽ are F and F̃ -invariant.

H(ΓδDj) = (Γ̃D̃j)
δ
,
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and H is a (v, ṽ)-isometry on this set. Now let us construct H0 on {ε = 0} × {x < 0}.
Let

H0(Dδ
j ) = D̃δ

j ,

and H0 be a (v, ṽ)-isometry on Dδ
j . Extend H0 to [D1, f0(D1)] as a (v, ṽ)-affine map in

the complement to Dδ. Let us then extend H0 to {ε = 0}× {x < 0} by dynamics. Let
H0(0) = 0.

Then H now defined for ε ≤ 0 is continuous at D and 0. It is continuous at D
because v and ṽ are continuous at their domains.

It is continuous at 0 because it brings γl = F lΓD1 to γ̃l = F̃ lΓ̃D̃1
and δl = F−lΓC1

to δ̃l = F̃−lΓ̃C̃1
. But the curvilinear triangles bounded by arcs of γl, δl and the segment

[f l0D1, f
−l
0 C1] form a shrinking sequence of neighborhoods of 0 in the set ε ≤ 0. Same

for γ̃l, δ̃l and [f̃ l0D̃1, f̃
−l
0 C̃1].

The most difficult part, construction of H in the set ε ≥ 0 is over.

5.5.7 Construction of H for ε < 0

In the set ε < 0, the map H is constructed in a trivial way: it preserves ε, brings ΓC
to Γ̃C̃ in the domain x >

√
−ε (ΓD to Γ̃D̃ in the domain x < −

√
−ε). In the domain

x2 + ε < 0 it preserves ε. It is constructed in a fundamental domain (a cone with a
vertex 0) and extended to the domain x2 + ε < 0 by dynamics.

This proves Lemma 3 modulo Proposition 1. �

Note that the maps Hε constructed above may have no limit at all as ε↘ 0.

5.5.8 Proof of Proposition 1

Proof Proposition 1 follows from the non-synchronization condition. The detailed
arguments follow.

Let us prove that for (l, i, j) 6= (l′, i′, j′),

either ε+
l,i,j < ε−l′,i′,j′ or ε

−
l,i,j > ε+

l′,i′,j′ . (16)

Let T be the time function related to the generator vε for ε > 0:

T (x, y, ε) =

∫ y

x

dz

vε(z)
.

Let

t(ε) = T (D1(ε), C1(ε)), τj(ε) = T (D1(ε), Dj(ε), ε), ρi(ε) = T (C1(ε), Ci(ε), ε).

For ε = 0, τj(ε) and ρi(ε) are well defined, and t(0) =∞.
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The non-synchronization condition requires: for (i, j) 6= (i′, j′),

τj(0)− ρj(0) 6= τj′(0)− τi′(0)( mod Z). (17)

Equations for εl,i,j, ε+
l,i,j and ε

−
l,i,j are:

τj(ε) + l = t(ε) + ρi(ε),

τj(ε
+) + l = t(ε+) + ρi(ε

+)− 2δ, (18)

τj(ε
−) + l = t(ε−) + ρi(ε

−) + 2δ. (19)

Now let us prove (16). We will use the monotonicity of the function t : t ↗ ∞ as
ε↘ 0. WLOG, l′ ≥ l. When l→∞, ε, ε+, ε− → 0. Hence, for l large,

τj(ε) = τj(0) + o(1), ρi(ε) = ρi(0) + o(1).

If l′ > l + 1, then

l′ + τj′(0)− ρi′(0)− 2δ + o(1) > l + τj(0)− ρi(0) + 2δ.

Hence,
ε−l,i,j > ε+

l;,i′,j′ .

In case l′ = l + 1 or l′ = l, the set

(l′ + τj′(0)− ρi′(0))− (l + τj(0)− ρi(0))

is finite, and contains no zero elements for (l, i, j) 6= (l′, i′, j′) by (17). Together with
monotonicity of the function t, this implies (16) for small ε and δ. �

5.6 Choice of a neighborhood of the LBS(V )

Let V be an SN - SN family, v0 be the unperturbed vector field of V . Let Sj(ε, λ) be
the saddles of vε,λ continuous in ε, λ and such that Sj(0, 0) = Sj. For λ > 0 let S0(ε, λ)
and N(ε, λ) be the saddle and the node to which the saddle-node N(0, λ) is split;

S0(ε, λ)→ N(ε, 0), N(ε, λ)→ N(ε, 0)

as λ→ 0. Sometimes we skip the dependence on ε, λ in our notations.
Let u1, ..., un be the separatrices of S1, ..., Sn that cross Γ+, Aj = uj∩Γ+, see Fig. 1.
For λ < 0 let u0(ε, λ) be the unstable separatrix of S0 that crosses Γ−. Let B(ε, λ) =

u0(ε, λ) ∩ Γ−. For λ = 0 let u0(ε, 0) be the separatrix of the hyperbolic sectors of the
saddle-nodes N(ε, 0). Let B(ε, 0) = u0(ε, 0) ∩ Γ−. Then B(ε, λ)→ B(ε, 0) as ε↗ 0.
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Figure 9: A large bifurcation support of an SN - SN family and its neighborhood

For λ < 0, the saddle-node N vanishes. The separatrices uj penetrate to Γ− and
cross it at the points Bj(ε, λ) = uj(ε, λ) ∩ Γ−.

The map Q : Γ− → Γ along the orbits of v(ε,λ) is well defined for all the small
parameter values. Let C = Q(B), Cj = Q(Bj). Formally, Cj are defined for λ > 0
only. But we will set Cj = C for λ ≤ 0.

Let D = D(ε, λ) be the last intersection point of the unstable separatrix s(ε, λ) of
Iε, λ; it is defined on all the base of V .

Let Ṽ be a nearby family to V . Then all the objects defined for V are defined for
Ṽ and denoted by the same symbols with tilde.

Let  L = LBS(V ),  ̃L = LBS(Ṽ ). Let us choose a special neighborhood U of  L with
the following properties, see Fig. 9. The boundary ∂U of U is a smooth curve with 2n
arcs α1, ..., αn, σ1, ..., σn outside γ, and two arcs ω and σ inside. The endpoints of the
arcs σj are the intersection points of the stable separatrices of the saddles Sj with ∂U ;
all these points smoothly depend on (ε, λ). The arcs σj, j = 1, ..., n − 1 have exactly
two contact points with vε,λ. The arcs α1, ..., an−1 go in between the arcs σj: the arc αj
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has one endpoint common with σj, and one endpoint common with σj+1. The arc αn
is more complicated: it goes back and forth along the separatrix u0, and once around
the semistable cycle γ. The orbits of the vector fields vε,λ enter U through all the arcs
αj.

The arc σ is constructed near the saddle I in the same way as σj near Sj. The arc
ω goes twice along the separatrix s, and once around γ. The orbits of the vector fields
vε,λ exit U through all the arcs σ, ω.

Let Ũ be a similar neighborhood of L̃, and σ̃j, α̃j, σ̃, ω̃ be the similar arcs of ∂Ũ .

5.7 Moderate equivalence near the large bifurcation supports

We now construct the required equivalence.
Consider a saddle-node family F of the Poincare maps of the cycle γ depending

on the parameter ε, λ for the family V . Let X be the normalizing chart for F on Γ
and C,D,Ci(ε, λ) (defined for ε > 0), C(ε, λ) (defined for ε ≤ 0), D(ε, λ) (defined for
ε ∈ (R, 0)) be the same as in Section 3.2. As λ is fixed, we do not mention dependence
on λ. In order to fit the notations of Lemma 3, let:

k = 1, D1(ε) = D(ε), Ci(ε) = Ci(ε, λ)

for ε > 0;Ci(ε) = C(ε, λ) for ε ≤ 0. Thus the curves Γi are defined; they differ for
ε > 0 and coincide for ε ≤ 0. Let F̃ , C̃i, D̃, Γ̃ be the analogous objects for Ṽ .

Let us now apply Lemma 3. It provides a weak topological equivalence between
the families F and F̃ with the marked points Ci(ε), D(ε), C̃i(ε), D̃(ε). The map H is
continuous at the points C(0), D(0). The inverse map H−1 is continuous at C̃(0), D̃(0).
The parameter change

h : (ε, λ) 7→ (ε̃, λ̃), ε̃ = h1(ε), λ̃ = λ (20)

will be used in the construction of the moderate equivalence between V and Ṽ in U
and Ũ .

Denote by Σj,Σ0 the domains adjacent to the saddles Sj, I and constructed in the
following way. The domain Σj(ε0) is bounded by the arc σj (respectively, σ), and the
stable manifold of Sj(S).

Let us now construct the moderate equivalence H = (h,Hε,λ) between V and Ṽ
in Ū . The map of the bases h is already constructed; it is provided by Lemma 3 and
guaranties that the vector fields of the family V with sparkling saddle connections
correspond to those of the family Ṽ .

The homeomorphism Hε,λ|Σj → Σ̃j continuous in the parameters and conjugating
vε,λ and ṽh(ε,λ) in those domains may be easily constructed.

Let us now construct Hε,λ on the complement W of U to ∪Σj. The cross-section
Γ− splits U in two parts. Denote the part that contains γ by W , and the part that
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contains N by Z. Note that W ⊃ Γ ∩ Γ, and Z ⊃ Γ+ ∩ U . Let as first construct
the map H in W (times the base). The map Hε,λ on Γ coincides with the map Hε,λ

constructed in Lemma 3.
Any backward orbit of vε,λ that starts on Γ at a point p either intersects Γ at

the point q = F−1(p, ε, λ), or intersects ∂U+ ∪ Γ− at exactly one point q. The same
property holds for ṽh1(ε),λ; any point p̃ ∈ Γ̃ generates a point q̃ ∈ Γ̃ ∪ ∂Ũ+ ∪ Γ̃− on the
backward orbit of p̃. For any p ∈ Γ, we set Hε,λ(p) = Hh1(ε),λ(p). Let

Hε,λ(q) = q̃.

Moreover, Hε,λ brings the arc of the orbit of vε,λ between p and q to the arc of the
orbit of ṽh1(ε),λ between p̃ and q̃ with the relative length preserved (if a point r splits
the arc from p to q with the ration λ

1−λ then the point Hε,λ(r) splits the arc between
p̃ and q̃ with the same ratio). Such a map between two arcs is called relatively linear.

Note that the orbits passing through Cj(ε, λ) are separatrices of the saddles Sj(ε, λ),
and that H(ε,λ) brings them to corresponding separatrices, because H(ε,λ)Cj(ε, λ) =

C̃j(h(ε, λ)).
Let Γ0 and Γ′0 be two segments that connect the saddle I and points on ∂U . Any

forward orbit of vε,λ that starts at p ∈ Γ either intersects Γ at the point q = F (p, ε, λ)
or at a point q ∈ ∂U ∪ Γ0 ∪ Γ′0. Let

Hε,λ(p) = Hε,λ(p) = p̃,Hε,λ(q) = q̃,

and the arc between p and q is mapped by Hε,λ in the relatively linear way to the arc
between p̃ and q̃.

In a similar way the map Hε,λ is defined in the curvilinear triangle bounded: one by
Γ0, a stable separatrix of S0, and an arc of ∂U ; another by Γ′0, another stable separatrix
of S0, and another arc of ∂U , see Fig. 9.

Thus the map Hε,λ is defined in W . It brings saddles S0 to saddles S̃0, and arcs of
separatrices of the saddles Sj that intersect Γ to those of the saddles S̃j that intersect
Γ̃.

Let us now construct H in B×Z. Consider first the domain Y between Γ+ and Γ−.
In this domain the family V is smoothly orbital equivalent to (3). Let the points B,Bj

on Γ ( B̃, B̃j on Γ̃) correspond to the family V (respectively Ṽ ). It is easy to construct
an automorphism of (3) that brings Γ− to Γ̃−, B to B̃, Bj to B̃j. Automatically, the
points Aj will be mapped to Ãj.

Connect the saddles Sj and S̃j by two segments with two points on ∂U and ∂Ũ .
The same construction as above allows us to extend the conjugacy between the closures
of the saturations of Γ+ and Γ̃+ by the backward orbits.

The conjugacy H thus constructed is continuous on the LBS (V ), as well as H−1
on the LBS (Ṽ ). Now, Theorem 6 may be applied. It implies structural stability of V .
Theorem 3 is proved.

27

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
30

74
2



6 Embedding theorem for parabolic germs with a pa-
rameter

In this section we prove Theorem 5. The proof of the original theorem (without the
parameter) is rather lengthy. Here we recall the sketch of this proof and show that the
presence of the parameter does not affect it.

6.1 Takens formal embedding theorem

Theorem 7. [T1] Suppose that a germ F : (R, 0)→ (R, 0) has a linear part identity.
Then it is formally equivalent to an embeddable germ: there exists a formal vector field
v̂ such that F̂ = g1

v̂. Here F̂ , v̂ are formal Taylor series of F and v at zero.

The same theorem holds for smooth parameter-depending germs. If Fλ : (Rk, 0)→
(Rk, 0) is a germ of a C∞-map depending on a parameter λ ∈ B = (Rk, 0), then in the
previous theorem

F̂λ = g1
v̂λ
,

where coefficients of the formal series F̂λ, v̂λ depend smoothly on λ.
Proof The proof of Theorem 7 is based on the fact that the coefficients of the k-jet
of v̂ depend polynomially on the coefficients of the k-jet of F . If the entries of these
formulas are smooth in λ, then the outcome has the same property. �

Note that a smooth or formal family of vector fields on (R, 0) is smoothly (or
formally) equivalent to a family

wα =
x2 + ε

1 + a(α)x
, α = (ε, λ), ε ∈ (R, 0), λ ∈ (Rk−1, 0). (21)

In the formal case a is a formal series in ε, x with the coefficients depending on λ,
denoted by ŵα.

By the Borel-Whitney theorem, there exists a smooth vector field v0 in a neighbor-
hood of (0, 0, λ) such that F̂ = ĝ1

v0
, where hat means here transition to formal Taylor

series at (0, 0, λ) in the variables (x, ε). The difference F − g1
v0

is flat on the plane
(0, 0, λ).

6.2 The generator for f0,λ.

Theorem 8. A smooth family of parabolic germs

x 7→ x+ x2 + x3f(x, λ) (22)

has a generator that depends smoothly on λ.
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Proof The proof of this theorem without parameter is well known [T2]. We repeat it
here in a modified form adjusted to the presence of the parameter, The family (22) is
formally equivalent at (0, λ) to

g0,λ := g1
w0,λ

, w0,λ =
x2

1 + a(λ)x.

There exists a smooth coordinate change that brings the family (1) to the form

f0,λ = g1
w0,λ

+R0,

where R0 is flat at (0, λ).
The generator is found separately for small positive and negative x. Consider the

case x < 0, the case x > 0 is treated in the same way. Take a map

tλ : (R−, 0)→ (R,∞), x 7→ −1

x
+ a(λ) lnx.

The map tλ rectifies the vector field w0,λ and brings its time-one phase flow tranwsfor-
mation to the unit shift

T : t 7→ t+ 1.

The family f0.λ in the coordinate tλ has the form:

f̃λ : t 7→ t+ 1 +Rλ(t), (23)

where Rλ is flat at infinity. This implies that for any N there exists a smooth function
RN , bounded and with bounded derivatives such that

Rλ(t) = t−nRN(t, λ) (24)

We will prove that the family f̃λ is smooth equivalent to the shift T : t 7→ t + 1 near
infinity, and the conjugacy Hλ = id + hλ is a solution of a so called Abel equation

hλ − hλ ◦ f0,λ = Rλ.

A solution to this equation has the form

hλ =
∞∑
0

Rλ ◦ f [k]
0,λ. (25)

The orbit f [k]
0,λ(t) resembles an arithmetic progression: f [k]

0,λ(t) > t + k
2
. Hence, (24)

implies that the series for f+λ converges near infinity, and all its derivatives in t, λ
tend to zero as t→∞. This provides a generator u−(0, λ) for x < 0.

In the same way the generator u+(0, λ) for x > 0 is contrudiction.
The formal series of u− and u+ coincide; so, u+ is a C∞ extension of u− to the

whole neighborhood of zero in x. �

From now on we consider a family F = {f(ε,λ)} such that f(0,λ) is embedded in a
smooth flow.
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6.3 A semiformally invariant vector field

A vector field is invariant under F iff

F ′xv − v ◦ F = 0.

We have already constructed the field v for ε = 0. Denote this field by w0(x, λ).
Let

F̂ (x, ε, λ) = fj(x, λ)εj.

This is a semiformal series : it is a formal Taylor series in ε whose coefficients are
smooth functions fj(x, λ). Let us find a formal generator of F as a semiformal series:

v̂ =
∑

wj(x, λ)εj

such that
F̂ ′xv̂ − v̂ ◦ F̂ ≡ 0.

We will find by induction in k a vector field vk polynomial in ε such that

F ′xvk − vk ◦ F = o(εk). (26)

Base of induction: k = 0. Take v0(x, ε, λ) = w0(x, ε). Then

F ′xv0 − v◦F = o(1).

Induction step. Suppose that the vector field vk is already found; let us find

vk+1 = vk + wk+1(x, λ)ek+1.

Equation (26) for k replaced by k + 1 implies:

df0

dx
wk+1 − wk+1 ◦ f0 = Rk+1,

where Rk+1 is a polynomial in wj, j ≤ k and their derivatives with the smooth coeffi-
cients flat at (0, λ). In this section, the functions written in the chart tλ are denoted
by the same symbol with tilde. In the chart (tλ, λ), the previous equation becomes a
so called Abel equation (we skip the subscript λ from tλ for brevity):

w̃k+1(t, λ)− w̃k+1(t+ 1, λ) = R̃k+1(t, λ) (27)

where R̃k+1 is a polynomial in w̃j, j ≤ k and their derivatives with the smooth coeffi-
cients flat at (∞, λ). This means that for any N > 0, α

D̃αR̃k+1 = t−NRN,α
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where RN,α is bounded together with all its derivatives. Equation (27) has a solution

w̃k+1 =
∞∑
l=0

R̃k+1(t+ l, λ).

Thus series converges to a function flat at infinity.
Thus we constructed a semiformal F -invariant vector field

v̂ =
∞∑
l=0

wkε
k

flat in (x, ε) at the points (0, 0, λ). Let v be an extension of v, that is, a smooth
function whose semiformal Taylor series in ε equals v̂. Then

F ′xv − v ◦ F = R; (28)

R is flat in ε on the hyperplane L = (ε = 0). Hence, for any N,α

DαR = εNRα
N . (29)

Moreover, on L
DαR|ε=0 = xNQα

N . (30)

6.4 From the semiformal invariant vector field to almost gen-
erator

Consider the time distance between the points (x, ε, λ) and (F (x, ε, λ), ε, λ) related to
the vector field v for ε > 0:

T (x, ε, λ) =

∫ F (x,ε,λ)

x

dy

v(y, ε, λ)
.

We have:
T ′x =

F ′x
v ◦ F

− 1

v
=
F ′x · v − v ◦ F
v · v ◦ F

.

Should the vector field v be invariant, this derivative would be identically zero, and T
would not depend on x: T (x, ε, λ) = τ(ε, λ). In our case, T ′x is flat on L. Take a small
δ and let τ(ε, λ) = T (−δ, ε, λ). Then

T (x, ε, λ) = τ(ε, λ) +Q(x, ε, λ),

Q is flat on L. Let V = vτ . We will prove that

g1
V = F +G, (31)
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where G is flat on L. The field V may be called almost generator of F . We have:∫ F (x,ε,λ)

x

dy

V (y, ε, λ)
=

1

τ

∫ F (x,ε,λ)

x

dy

v(y, ε, λ)
= 1 +

Q

τ
.

The function Q
τ
is flat on L. We have:

g
1+Q

τ
V = F = g1

V ◦ g
Q
τ
V .

The map g
Q
τ
V = id+ g, g̃ is flat on L. Hence,

F = g1
V −G,

G is flat on L. This proves (31).

6.5 Conjugacy

Lemma 4. Let a family F (1) satisfy (31), where G is flat on L. Then F is conjugate
to g1

V ; the conjugacy is C∞ in (x, ε, λ) for ε ≤ 0.

Proof The vector field V is smooth equivalent to x2+ε
1+a(ε,λ)x

. Consider a domain

Ω− : {ε > 0, |x| ≤ δ} ∪ {ε = 0, −δ ≤ x < 0}

Let us define a chart (t, ε, λ) in Ω− given by the formulas:

tε,λ =
1

2
√
ε

arctan(x2 + ε) +
1

2
ln(x2 + ε)

for ε 6= 0;

t0,λ = −1

x
+ a(0, λ) lnx

for ε = 0. This map rectifies the vector field V .
Let us globalize the map F , multiplying G by a cutting smooth function ϕ:

0 ≤ ϕ ≤ 1, ϕ ≡ 1 near 0; ϕ ≡ 0 for |x| ≥ δ.

Under the map t the set Ω− comes to a set that contains a set

Ω̃− : {ε > 0, −δ′ ≤ x < ψ(ε)},

where ψ(ε) < Cε−
1
2 . The map F in the domain Ω− becomes a map F̃ in Ω̃−; F̃ is an

"almost shift":
F̃ : (t, ε, λ) 7→ (t+ 1 + G̃, ε, λ).

32

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
30

74
2



Note that G̃ is identically zero for x > ψ(ε). Hence, the map F̃ is globally defined for
t ≥ δ′, and all the positive iterates of F̃ are well defined in Ω̃−.

Consider now the conjugacy equation for T : (t, ε, λ) 7→ (t+1, ε, λ) and F̃ = T + G̃.
It is important to mention that for any N ,

G̃ = εN t−NJN (32)

together with all its derivatives:

DαG̃ = εN t−NJN,α, (33)

where functions JN , JN,α are smooth and bounded with all their derivatives.
Let us find H̃ = id+ h̃ such that

H̃ ◦ F̃ = T ◦ H̃.

This equation has a solution
h = Σ∞0 G̃ ◦ F̃ [k]. (34)

The map F̃ is close to a shift, and its orbits are close to arithmetic progressions.
Equations (32) and (33) imply that the series h converges to a map flat on L− : ε =
0, x < 0.

Lemma 4 is proved in Ω−. But what about ε = 0, x ≥ 0?
The segments {λ, x ≥ 0 fixed, ε ∈ [ε0, 0), ε0 > 0}, are mapped by t to curves

t = ψλ,x(ε), t = O(1)ε−
1
2 . The points on L+ : ε = 0, x ≥ 0 are the ideal endpoints

of these curves. The function h̃ still tends to 0 together with all its derivatives along
these curves. Let H = id+ h be the map H̃ written in the original chart (x, ε, λ). It is
defined in |x| ≤ δ, λ ∈ (Rk, 0), ε ∈ (Rk, 0) outside L+ : x ≥ 0, λ ∈ (Rk, 0), ε = 0. But,
according to the previous estimate, h→ 0 together with all its derivatives, as (x, ε, λ)
approaches L+. Hence, h may be extended by 0 on L+, and H will remain infinitely
smooth on L+. Hence, the Takens generator v0 on L+ is the limit of the generator v
already found. This proves Theorem 5 �

7 Sketch of the proof of Conjecture 1
Here we present an idea how to modify the example from Secton 4 to get a continuum
of pairwise different simple bifurcation diagrams. The presentation is quite informal.
Begin with a three-parameter family TH from Section 4 and consider the one-parameter
family E described there. There are three sequences εn, im and λk that monotonically
tend to 0 and have the following property: vector field vεn has a sparkling saddle
connection between E and L; vector field vim has a sparkling saddle connection between
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L and I, vector field vλk has a sparkling saddle connection between E and I. The first
two sequences where already considered. On the coloured bifurcation diagram they
are distinwished, and generate the numeric moduli of these diagrams. On the simple
bifurcation diagram all the three sequences are seen as merely one sequence converging
to 0.

We want to mark these sequences even on a simple bifurcation diagram. For this
sace replace TH by a five-parameter family, constructed from TH with the following
changes. Replace the hyperbolic saddle E by a saddle-node still denoted by E and
governed by an additional parameter α1; the separatrix of the hyperbolic sectors of E
winds towards the polycyle γ. The same for the hyperbolic saddle I: it is replaced
by a saddle-node still denoted by I and governed by an additional parameter α2. The
separatrix of the hyperbolic sectors of I winds towards the loop l in the negative
time. Suppose that there are exactly three hyperbolic saddles Ej, j = 1, 2, 3; exactly
one unstable separatrix of each saddle enters E. Suppose that there are exactly two
hyperbolic saddles Ik, k = 1, 2; exactly one stable separatrix of each saddle emerges
from I. Consider a one-parameter subfamily E of the unfolding of the vector field thus
modified. Vector fields of this family have the polycycle “heart” unbroken, and saddle-
nodes E and I preserved. Only the loop is broken. Again there are three sequences
en, im, λk corresponding to sparkling saddle connections EL,LI, EI respectively. But
now these three sequences are marked even inside the simple bifurcation diagram of
the family: when the saddle-nodes vanish, a bunch of three, two and six connections
occurs near EL,LI, EI respectively.

This is quite a heuristic argument; to make it formal one need to prove that the
family E is topologically distinguished even inside the simple bifurcation diagram of
the unfolding, and many other things.
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