Polynomial growth of cyclicity for elementary polycycles and Hilbert–Arnold problem

Ilya V. Schurov
ilya@schurov.com
joint work with Pavel I. Kaleda

National Research University
Higher School of Economics

Equadiff 2011
5th August 2011
Problem (Existential Hilbert Problem)

Prove that for any $n \geq 2$ there exists a number $H(n) < \infty$ such that any polynomial line field of degree $\leq n$ has at most $H(n)$ LC’s.

is a particular case of

Problem (Global Finiteness Conjecture)

For any analytic family of line fields on S^2 with a compact parameter base B the number of LC’s is uniformly bounded.

Difficulties

- Analytical families are “rigid”
- “Bad” limit periodic sets (e.g. nonisolated singularities)
Problem (Existential Hilbert Problem)

Prove that for any \(n \geq 2 \) there exists a number \(H(n) < \infty \) such that any polynomial line field of degree \(\leq n \) has at most \(H(n) \) LC's.

is a particular case of

Problem (Global Finiteness Conjecture)

For any analytic family of line fields on \(S^2 \) with a compact parameter base \(B \) the number of LC's is uniformly bounded.

Difficulties

- Analytical families are “rigid”
- “Bad” limit periodic sets (e.g. nonisolated singularities)
Problem (Existential Hilbert Problem)

Prove that for any $n \geq 2$ there exists a number $H(n) < \infty$ such that any polynomial line field of degree $\leq n$ has at most $H(n)$ LC’s.

is a particular case of

Problem (Global Finiteness Conjecture)

For any analytic family of line fields on \mathbb{S}^2 with a compact parameter base B the number of LC’s is uniformly bounded.

Difficulties

- Analytical families are “rigid”
- “Bad” limit periodic sets (e.g. nonisolated singularities)
Problem (Existential Hilbert Problem)
Prove that for any \(n \geq 2 \) there exists a number \(H(n) < \infty \) such that any polynomial line field of degree \(\leq n \) has at most \(H(n) \) LC’s

is a particular case of

Problem (Global Finiteness Conjecture)
For any analytic family of line fields on \(S^2 \) with a compact parameter base \(B \) the number of LC’s is uniformly bounded.

Difficulties
- Analytical families are “rigid”
- “Bad” limit periodic sets (e.g. nonisolated singularities)
Problem (Existential Hilbert Problem)

Prove that for any \(n \geq 2 \) there exists a number \(H(n) < \infty \) such that any polynomial line field of degree \(\leq n \) has at most \(H(n) \) LC's

is a particular case of

Problem (Global Finiteness Conjecture)

For any analytic family of line fields on \(S^2 \) with a compact parameter base \(B \) the number of LC's is uniformly bounded.

Difficulties

- Analytical families are “rigid”
- “Bad” limit periodic sets (e.g. nonisolated singularities)
“Bad” limit periodic sets

Figure: Limit periodic set containing a curve of singular points
Problem (Hilbert–Arnold Problem)

Prove that in a *generic* finite-parameter family of smooth vector fields on S^2, the number of LC’s is uniformly bounded.

Definition

- Let $\{v(x, \varepsilon)\}_{\varepsilon \in B^k}$ be a k-parameter family of vector fields on S^2 having a polycycle γ for some $\varepsilon_* \in B$. The cyclicity μ of polycycle γ is the maximal number of LC’s that can born near γ for ε close to ε_*.
- The bifurcation number $B(k)$ is the maximal cyclicity of a nontrivial polycycle occurring in a generic k-parameter family.

Problem (Local Hilbert–Arnold Problem (LHAP))

Estimate $B(k)$ for any k.

Problem (Hilbert–Arnold Problem)

Prove that in a generic finite-parameter family of smooth vector fields on \mathbb{S}^2, the number of LC’s is uniformly bounded.

Definition

- Let $\{v(x, \varepsilon)\}_{\varepsilon \in B^k}$ be k-parameter family of vector fields on \mathbb{S}^2 having a polycycle γ for some $\varepsilon_* \in B$. The **cyclicity** μ of polycycle γ is the maximal number of LC’s that can born near γ for ε close to ε_*. The bifurcation number $B(k)$ is the maximal cyclicity of a nontrivial polycycle occuring in generic k-parameter family.

Problem (Local Hilbert–Arnold Problem (LHAP))

Estimate $B(k)$ for any k.

Problem (Hilbert–Arnold Problem)

Prove that in a generic finite-parameter family of smooth vector fields on \mathbb{S}^2, the number of LC’s is uniformly bounded.

Definition

- Let $\{v(x, \varepsilon)\}_{\varepsilon \in B^k}$ be k-parameter family of vector fields on \mathbb{S}^2 having a polycycle γ for some $\varepsilon_* \in B$. The cyclicity μ of polycycle γ is the maximal number of LC’s that can born near γ for ε close to ε_*.
- The **bifurcation number** $B(k)$ is the maximal cyclicity of a nontrivial polycycle occuring in generic k-parameter family.

Problem (Local Hilbert–Arnold Problem (LHAP))

Estimate $B(k)$ for any k.
Problem (Hilbert–Arnold Problem)
Prove that in a generic finite-parameter family of smooth vector fields on S^2, the number of LC’s is uniformly bounded.

Definition
- Let $\{v(x, \varepsilon)\}_{\varepsilon \in B^k}$ be k-parameter family of vector fields on S^2 having a polycycle γ for some $\varepsilon_* \in B$. The cyclicity μ of polycycle γ is the maximal number of LC’s that can born near γ for ε close to ε_*.
- The bifurcation number $B(k)$ is the maximal cyclicity of a nontrivial polycycle occuring in generic k-parameter family.

Problem (Local Hilbert–Arnold Problem (LHAP))
Estimate $B(k)$ for any k.
Overview

Polynomial growth

Proof

Conclusion

Previous results

Results on LHAP

- $B(1) = 1$ (Andronov-Leontovich, 1930s; Hopf, 1940s)
- $B(2) = 2$ (Takens, Bogdanov, Leontovich–Cherkas, Mourtada, Grozovskii, early 1970s–1993)

Definition

- Polycycle is called elementary if its vertices are all elementary singular points (i.e. hyperbolic saddles and saddle-nodes)
- $E(k)$ is the same as $B(k)$ for elementary polycycles.

Results for $E(k)$ for any k

- $E(k) < \infty$ (Ilyashenko–Yakovenko, 1995)
- $E(k) \leq 2^{25k^2}$ (Kaloshin, 2003)
Results on LHAP

- $B(1) = 1$ (Andronov-Leontovich, 1930s; Hopf, 1940s)
- $B(2) = 2$ (Takens, Bogdanov, Leontovich–Cherkas, Mourtada, Grozovskii, early 1970s–1993)

Definition

- Polycycle is called elementary if its vertices are all elementary singular points (i.e. hyperbolic saddles and saddle-nodes).
- $E(k)$ is the same as $B(k)$ for elementary polycycles.

Results for $E(k)$ for any k

- $E(k) < \infty$ (Ilyashenko–Yakovenko, 1995)
- $E(k) \leq 2^{25k^2}$ (Khaloshin, 2003)
Results on LHAP

- $B(1) = 1$ (Andronov-Leontovich, 1930s; Hopf, 1940s)
- $B(2) = 2$ (Takens, Bogdanov, Leontovich–Cherkas, Mourtada, Grozovskii, early 1970s–1993)

Definition

- Polycycle is called elementary if its vertices are all elementary singular points (i.e. hyperbolic saddles and saddle-nodes)
- $E(k)$ is the same as $B(k)$ for elementary polycycles.

Results for $E(k)$ for any k

- $E(k) < \infty$ (Ilyashenko–Yakovenko, 1995)
- $E(k) \leq 2^{25k^2}$ (Kaloshin, 2003)
Results on LHAP

- $B(1) = 1$ (Andronov-Leontovich, 1930s; Hopf, 1940s)
- $B(2) = 2$ (Takens, Bogdanov, Leontovich–Cherkas, Mourtada, Grozovskii, early 1970s–1993)

Definition

- Polycycle is called elementary if its vertices are all elementary singular points (i.e. hyperbolic saddles and saddle-nodes)
- $E(k)$ is the same as $B(k)$ for elementary polycycles.

Results for $E(k)$ for any k

- $E(k) < \infty$ (Ilyashenko–Yakovenko, 1995)
- $E(k) \leq 2^{25k^2}$ (Kaloshin, 2003)
Results on LHAP

- $B(1) = 1$ (Andronov-Leontovich, 1930s; Hopf, 1940s)
- $B(2) = 2$ (Takens, Bogdanov, Leontovich–Cherkas, Mourtada, Grozovskii, early 1970s–1993)

Definition

- Polycycle is called elementary if its vertices are all elementary singular points (i.e. hyperbolic saddles and saddle-nodes)
- $E(k)$ is the same as $B(k)$ for elementary polycycles.

Results for $E(k)$ for any k

- $E(k) < \infty$ (Ilyashenko–Yakovenko, 1995)
- $E(k) \leq 2^{25k^2}$ (Kaloshin, 2003)
Results on LHAP

- \(B(1) = 1 \) (Andronov-Leontovich, 1930s; Hopf, 1940s)
- \(B(2) = 2 \) (Takens, Bogdanov, Leontovich–Cherkas, Mourtada, Grozovskii, early 1970s–1993)

Definition

- Polycycle is called elementary if its vertices are all elementary singular points (i.e. hyperbolic saddles and saddle-nodes)
- \(E(k) \) is the same as \(B(k) \) for elementary polycycles.

Results for \(E(k) \) for any \(k \)

- \(E(k) < \infty \) (Ilyashenko–Yakovenko, 1995)
- \(E(k) \leq 2^{25k^2} \) (Kaloshin, 2003)
As number of parameters k increases, two effects contribute to growth of cyclicity:

1. Increasing of complexity of polycycles (e.g. more vertices);
2. Increasing of cyclicity of particular polycycle.

Problem: fix complexity of polycycle and estimate its cyclicity with respect to number of parameters k.

Example: cyclicity of simple separatrix loop $\leq k$ (Leontovich, 46; Roussarie, 86). This estimate is sharp (Ilyashenko–Yakovenko, 91).
Statement of the problem

As number of parameters k increases, two effects contribute to growth of cyclicity:

1. Increasing of complexity of polycycles (e.g. more vertices);
2. Increasing of cyclicity of particular polycycle.

Problem: fix complexity of polycycle and estimate its cyclicity with respect to number of parameters k.

Example: cyclicity of simple separatrix loop $\leq k$ (Leontovich, 46; Roussarie, 86). This estimate is sharp (Ilyashenko–Yakovenko, 91).
Statement of the problem

As number of parameters k increases, two effects contribute to growth of cyclicity:

1. Increasing of complexity of polycycles (e.g. more vertices);
2. Increasing of cyclicity of particular polycycle.

Problem: fix complexity of polycycle and estimate its cyclicity with respect to number of parameters k.

Example: cyclicity of simple separatrix loop $\leq k$ (Leontovich, 46; Roussarie, 86). This estimate is sharp (Ilyashenko–Yakovenko, 91).
Elementary polycycles with fixed number of vertices

Statement of the problem

As number of parameters k increases, two effects contribute to growth of cyclicity:

1. Increasing of complexity of polycycles (e.g. more vertices);
2. Increasing of cyclicity of particular polycycle.

Problem: fix complexity of polycycle and estimate its cyclicity with respect to number of parameters k.

Example: cyclicity of simple separatrix loop $\leq k$ (Leontovich, 46; Roussarie, 86). This estimate is sharp (Ilyashenko–Yakovenko, 91).
Elementary polycycles with fixed number of vertices

Statement of the problem

As number of parameters k increases, two effects contribute to growth of cyclicity:

1. Increasing of complexity of polycycles (e.g. more vertices);
2. Increasing of cyclicity of particular polycycle.

Problem: fix complexity of polycycle and estimate its cyclicity with respect to number of parameters k.

Example: cyclicity of simple separatrix loop $\leq k$ (Leontovich, 46; Roussarie, 86). This estimate is sharp (Ilyashenko–Yakovenko, 91).
Main result

Definition

Let $E(n, k)$ be a maximal cyclicity of a polycycle with n vertices in generic k-parameter family.

Theorem (P. Kaleda–I. S., 2010)

$$E(n, k) \leq C(n)k^{3n}.$$

- Good news: polynomial growth with respect to codimension k.
- Bad news: $C(n) = 2^{5n^2 + 20n}$.
Main result

Definition

Let $E(n, k)$ be a maximal cyclicity of a polycycle with n vertices in generic k-parameter family.

Theorem (P.Kaleda–I.S., 2010)

$$E(n, k) \leq C(n)k^{3n}.$$

- Good news: polynomial growth with respect to codimension k.
- Bad news: $C(n) = 2^{5n^2+20n}$.
Main result

Definition
Let $E(n, k)$ be a maximal cyclicity of a polycycle with n vertices in generic k-parameter family.

Theorem (P. Kaleda–I. S., 2010)

$$E(n, k) \leq C(n)k^{3n}.$$

- Good news: polynomial growth with respect to codimension k.
- Bad news: $C(n) = 2^{5n^2+20n}$.
Main result

Definition
Let $E(n, k)$ be a maximal cyclicity of a polycycle with n vertices in generic k-parameter family.

Theorem (P. Kaleda–I.S., 2010)

$$E(n, k) \leq C(n) k^{3n}.$$

- Good news: polynomial growth with respect to codimension k.
- Bad news: $C(n) = 2^{5n^2 + 20n}$.
Outline of the proof

1. Poincaré map and basic system
2. Normal forms near singular points
3. Khovanski reduction
4. Bézout–Kaloshin theorem
Outline of the proof

1. Poincaré map and basic system
2. Normal forms near singular points
3. Khovanski reduction
4. Bézout–Kaloshin theorem
Outline of the proof

1. Poincaré map and basic system
2. Normal forms near singular points
3. Khovanski reduction
4. Bézout–Kaloshin theorem
Outline of the proof

1. Poincaré map and basic system
2. Normal forms near singular points
3. Khovanski reduction
4. Bézout–Kaloshin theorem
Poincaré map and basic system

LC’s correspond to isolated solutions of the following system:

\[
\begin{align*}
 y_j &= \Delta_j(x_j; \varepsilon) \\
 x_{j+1} &= f_j(x_j; \varepsilon) \\
 x_{n+1} &= x_1
\end{align*}
\]

Note that Δ_j’s are singular at 0, f_j’s are generic smooth.

Figure: Basic system
Poincaré map and basic system

LC’s correspond to isolated solutions of the following system:

\[
\begin{align*}
y_j &= \Delta_j(x_j; \epsilon) \\
x_{j+1} &= f_j(x_j; \epsilon) \\
x_{n+1} &= x_1
\end{align*}
\]

Note that Δ_j’s are singular at 0, f_j’s are generic smooth.

\[\text{Figure: Basic system}\]
LC’s correspond to isolated solutions of the following system:

\[
\begin{align*}
y_j &= \Delta_j(x_j; \varepsilon) \\
x_{j+1} &= f_j(x_j; \varepsilon) \\
x_{n+1} &= x_1
\end{align*}
\]

Note that Δ_j’s are singular at 0, f_j’s are generic smooth.
Normal forms and Pfaffian equations

- **Good news**: there exists polynomial normal forms for “our” singular points.
- **Very good news**: these normal forms are integrable, so Δ_j’s can be written explicitly.
- **Bad news**: Δ_j’s are still singular (non-smooth at 0).
- **Good news**: they satisfy Pfaffian equations (differential equations with polynomial coefficients).

Functional-Pfaffian system:

\[
\begin{align*}
\omega_j &= 0, \\
F_j(x, y, \varepsilon) &= 0,
\end{align*}
\]

\(j = 1, \ldots, n\)
Normal forms and Pfaffian equations

- **Good news:** there exists polynomial normal forms for “our” singular points.

- **Very good news:** these normal forms are integrable, so Δ_j’s can be written explicitly.

- **Bad news:** Δ_j’s are still singular (non-smooth at 0).

- **Good news:** they satisfy Pfaffian equations (differential equations with polynomial coefficients).

Functional-Pfaffian system:

\[
\begin{cases}
\omega_j = 0, \\
F_j(x, y, \varepsilon) = 0,
\end{cases}
\quad j = 1, \ldots, n
\]
Normal forms and Pfaffian equations

- **Good news:** there exists polynomial normal forms for “our” singular points.
- **Very good news:** these normal forms are integrable, so Δ_j’s can be written explicitly.
- **Bad news:** Δ_j’s are still singular (non-smooth at 0).
- **Good news:** they satisfy Pfaffian equations (differential equations with polynomial coefficients).

Functional-Pfaffian system:

\[
\begin{align*}
\omega_j &= 0, \\
F_j(x, y, \varepsilon) &= 0,
\end{align*}
\]
$j = 1, \ldots, n$
Good news: there exists polynomial normal forms for “our” singular points.

Very good news: these normal forms are integrable, so Δ_j’s can be written explicitly.

Bad news: Δ_j’s are still singular (non-smooth at 0).

Good news: they satisfy Pfaffian equations (differential equations with polynomial coefficients).

Functional-Pfaffian system:

$$\begin{cases} \omega_j = 0, \\ F_j(x, y, \epsilon) = 0, \end{cases} \quad j = 1, \ldots, n$$
Normal forms and Pfaffian equations

- **Good news**: there exists polynomial normal forms for “our” singular points.
- **Very good news**: these normal forms are integrable, so Δ_j’s can be written explicitly.
- **Bad news**: Δ_j’s are still singular (non-smooth at 0).
- **Good news**: they satisfy Pfaffian equations (differential equations with polynomial coefficients).

Functional-Pfaffian system:

$$\begin{cases}
\omega_j = 0, \\
F_j(x, y, \varepsilon) = 0,
\end{cases} \quad j = 1, \ldots, n$$
Khovanski reduction

- A step of Khovanski reduction: replacing one Pfaffian equation with a functional one.
- Number of roots of initial system is estimated by the number of roots of a new system. (Version of Rolle’s Lemma.)
- Crucial observation: \(n = \) the number of vertices = the number of Pfaffian equations = the number of Khovanski reduction steps.
- Functional equations we obtain are of the form \(P \circ F(x) = a \), where \(P \) is a polynomial, \(F \) is a generic smooth function. Growth of degree of \(P \) on each step is under control.
Khovanski reduction

- A step of Khovanski reduction: replacing one Pfaffian equation with a functional one.
- Number of roots of initial system is estimated by the number of roots of a new system. (Version of Rolle’s Lemma.)
- Crucial observation: \(n = \) the number of vertices \(= \) the number of Pfaffian equations \(= \) the number of Khovanski reduction steps.
- Functional equations we obtain are of the form \(P \circ F(x) = a \), where \(P \) is a polynomial, \(F \) is a generic smooth function. Growth of degree of \(P \) on each step is under control.
Khovanski reduction

- A step of Khovanski reduction: replacing one Pfaffian equation with a functional one.
- Number of roots of initial system is estimated by the number of roots of a new system. (Version of Rolle’s Lemma.)
- Crucial observation: \(n = \) the number of vertices = the number of Pfaffian equations = the number of Khovanski reduction steps.
- Functional equations we obtain are of the form \(P \circ F(x) = a \), where \(P \) is a polynomial, \(F \) is a generic smooth function. Growth of degree of \(P \) on each step is under control.
Khovanski reduction

- A step of Khovanski reduction: replacing one Pfaffian equation with a functional one.
- Number of roots of initial system is estimated by the number of roots of a new system. (Version of Rolle’s Lemma.)
- Crucial observation: \(n = \) the number of vertices = the number of Pfaffian equations = the number of Khovanski reduction steps.
- Functional equations we obtain are of the form \(P \circ F(x) = a \), where \(P \) is a polynomial, \(F \) is a generic smooth function. Growth of degree of \(P \) on each step is under control.
Bézout–Kaloshin theorem

Theorem (Kaloshin, 2003)

Let \(P = (P^1, \ldots, P^n) \) be some vector-polynomial, and \(F : \mathbb{R}^n \to \mathbb{R}^s \) is a generic smooth vector-function. Under some assumptions, the number of preimages \(\#\{x : P \circ F(x) = a\} \) can be estimated by the product \(\prod_{j=1}^n \deg P^j \) (like in Bézout Theorem).

Application of Bézout–Kaloshin Theorem to the functional system obtained as a result of Khovanski reduction gives an estimated for the number of roots of Basic system and thus for the number of LC’s.

Crucial point: we must control the growth of degree on every step of Khovanski reduction and the overall number of steps.
Bézout–Kaloshin theorem

Theorem (Kaloshin, 2003)

Let $P = (P^1, \ldots, P^n)$ be some vector-polynomial, and $F: \mathbb{R}^n \rightarrow \mathbb{R}^s$ is a generic smooth vector-function. Under some assumptions, the number of preimages $\# \{x : P \circ F(x) = a\}$ can be estimated by the product $\prod_{j=1}^n \deg P^j$ (like in Bézout Theorem).

Application of Bézout–Kaloshin Theorem to the functional system obtained as a result of Khovanski reduction gives an estimated for the number of roots of Basic system and thus for the number of LC’s.

Crucial point: we must control the growth of degree on every step of Khovanski reduction and the overall number of steps.
Theorem (Kaloshin, 2003)

Let $P = (P^1, \ldots, P^n)$ be some vector-polynomial, and $F : \mathbb{R}^n \to \mathbb{R}^s$ is a generic smooth vector-function. Under some assumptions, the number of preimages $\# \{x : P \circ F(x) = a\}$ can be estimated by the product $\prod_{j=1}^n \deg P^j$ (like in Bézout Theorem).

Application of Bézout–Kaloshin Theorem to the functional system obtained as a result of Khovanski reduction gives an estimated for the number of roots of Basic system and thus for the number of LC’s.

Crucial point: we must control the growth of degree on every step of Khovanski reduction and the overall number of steps.
Problem

Estimate the cyclicity of polycycle with one cuspidal singular point.
Details

Thank you for your attention!
Details

Thank you for your attention!