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CANARD CYCLES IN GENERIC FAST-SLOW SYSTEMS

ON THE TORUS

I. V. SHCHUROV

Abstract. In generic fast-slow systems with a single parameter on the two-dimen-
sional torus, for arbitrarily small values of this parameter there exist attracting canard
cycles. This is a key distinction between the dynamics on the torus and the dynamics
of similar systems on the plane. This has already been proved for systems with a
convex slow curve. This paper looks at systems with a nonconvex slow curve. Upper

and lower estimates for the number of canard cycles are obtained. An open set of
systems having a preassigned number of attracting canard cycles is constructed.

1. Introduction

We consider a fast-slow system on the torus:

(1.1)

{
ẋ = f(x, y, ε),

ẏ = εg(x, y, ε),
(x, y) ∈ T

2, ε ∈ (R, 0).

In such systems a new effect appears, which is not observed in analogous systems on the
plane. This effect is related to attracting closed solutions that are canards [1, 2], which
travel a distance near the unstable part of the slow surface that is bounded below as
ε → 0.

This effect was first described by Ilyashenko and Guckenheimer [3]. It was shown
that for a certain concrete family of systems with no additional parameters there exists
a sequence of intervals accumulating to zero such that, for every ε in these intervals, the
system has a pair of canard cycles, one attracting and the other repelling, and this pair
is unique. This is a key distinction between the dynamics on the torus and the dynamics
on the plane, where canard solutions of this type are observed in the presence of an
additional parameter (see, for example, [4]).

Subsequently this assertion was generalized to the case of an arbitrary fast-slow system
on the torus that has a convex slow curve and satisfies certain local conditions of a generic
nature (see [5]).

This paper extends the studies described above and is devoted to considering the case
of a nonconvex slow curve. It turns out that, depending on the form of the slow curve
and the values of the derivative f ′

x on it, for an arbitrarily small value of the parameter
several pairs of stable and unstable canard cycles can be observed. There are no more of
them than the number of folds of the slow curve under the projection along the direction
of fast motion. At the same time, for any preassigned number k it is possible to construct
an open set of systems that have k pairs of canard cycles for an arbitrarily small value
of the parameter ε.
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2. Main results

In this section we present the definitions we need and state the main results of the
paper.

2.1. The preliminary statement of the main result. In this subsection we state two
results we obtain in this paper rigorously, whilst minimizing the number of preliminary
constructions. In Subsections 2.2 and 2.3 we state similar but more precise results.

We consider a fast-slow system on the torus:

(2.1)

{
ẋ = f(x, y, ε),

ẏ = εg(x, y, ε),
(x, y) ∈ T

2 ∼= R
2/(2πZ2), ε ∈ (R, 0),

where the functions f and g are smooth enough that all our subsequent statements hold.
Throughout the paper we assume that the speed of the slow motion is separated from
zero (for definiteness, g > 0) and the lift of the slow curve M := {(x, y) | f(x, y, 0) = 0}
to the covering coordinate plane lies in the interior of the square {|x| < π, |y| < π}.
We also require that f ′

x(x, y, 0) �= 0 for any point (x, y) ∈ M other than the fold points.
These conditions define an open set in the space of all fast-slow systems on the torus.
Without loss of generality we can assume that f(x, 0, 0) > 0 (outside the interior of the
slow surface the fast motion is directed in the positive direction). Since we are only
interested in the phase curves of the system (2.1) and not in their parametrization, we
can divide the vector field of the system by g and assume without loss of generality that
g ≡ 1.

We are interested in the canard solutions, that is, solutions that, as ε → 0+, travel
a distance separated from zero near the unstable part of the slow curve. The precise
definition will be given below (see Definition 2.4 in the next subsection). Our main goal
is to analyse canard cycles that perform one revolution along the y-axis.

Theorem 2.1 (upper estimate for the number of canard cycles). A generic system of the
form (2.1) has the following property. On the ε-axis there exists a sequence of intervals
accumulating to zero such that for every ε that belongs to one of these intervals the system
has attracting closed canard solutions (canard cycles) performing one revolution along the
y-axis. The basin of attraction of each of these cycles (on the entire torus) has a measure
that is uniformly bounded below. There are no more than half as many of these cycles as
the number of jump points (that is, points on the curve M at which the tangent to M is
vertical).

Theorem 2.1 is a corollary of Theorem 2.5, which is more precise and stronger. We
state it in the next subsection, together with Proposition 2.6. It gives an upper bound
for the number of canard cycles a generic system can have. When M is a convex curve
(more precisely, contains exactly two jump points), the theorem was proved in [5]. In
this paper we consider the case of a nonconvex slow curve M .

Theorem 2.2 (sharp estimate). There exists an open set of systems for which the upper
bound for the number of canard cycles given in Theorem 2.1 is attained: the number of
canard cycles is equal to the number of folds on the slow curve.

Theorem 2.2 is proved in §6. In §2.3 a special result of this type is stated in the
simplest nonconvex case: we give explicit necessary and sufficient conditions for the
maximal number of attracting canard cycles to exist in this case; as a result we describe
the open set of systems appearing in this theorem explicitly.
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2.2. The general case: an upper bound for the number of canard cycles. We
need to impose additional requirements on the system (2.1): this is to exclude from
consideration systems satisfying finitely many conditions consisting of a type of equation
which will be formulated later on in the paper. In particular, throughout what follows we
require that the following additional nondegeneracy condition holds: all the fold points
of the slow curve M are nondegenerate, that is,

(2.2)
∂2f(x, y, 0)

∂x2

∣∣∣∣
G

�= 0,
∂f(x, y, 0)

∂y

∣∣∣∣
G

�= 0

for every fold point G of the curve M . We also require that all the fold points have
different y-coordinates:

(2.3) y(G1) �= y(G2).

In the course of proving the results we shall need to impose two more nondegeneracy
conditions of the same type on the system; to state them we need additional constructions
(see (5.4) and (5.17)).

Definition 2.3. A fold point G of the slow curve M is called a forward (reverse) jump
point if in a small neighbourhood of it the part of the slow curve is situated on the left
(on the right) of G.

We denote by G± the left-most (+) and the right-most (−) jump points (they are
defined uniquely due to the nondegeneracy conditions (2.2) and (2.3)).

Figure 1. The simplest nonconvex case: 4 jump points; E and G− are
forward jump points; G+ and D are reverse jump points. The triple
arrow shows the direction of fast motion.

Let J+ be some fixed segment that is a transversal to the unstable part of the slow
curve M , is close to the reverse jump point G+ (see Figure 1), and does not intersect the
stable part of the slow curve. Its exact location will be defined below (see p. 182).

Definition 2.4. A trajectory is called canard if it intersects J+.

The trajectory starting from J+ in reverse time is rapidly attracted to the slow curve
and covers almost all the distance to the jump point near the unstable part of the slow
curve. Thus, the formal Definition 2.4 corresponds to the heuristic description of canard
solutions given in §2.1.

Figure 1 depicts the simplest case of a nonconvex slow curve. Consider the trajectory
passing near the repelling arc of the slow curveDG−. Reverse the time: then the arcDG−

becomes attracting, and the trajectory moves to the left near this arc right up to the
reverse jump near D, after which it is attracted to the part G+F again moving to the left
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right up to the jump point G+. Consequently, it intersects the segment J+ and thus is
canard in the sense of the definition given above. In more complicated cases, a trajectory
passing near some unstable arc of the slow curve in reverse time may undergo a series of
reverse jumps, after which it intersects J+.

We consider a nondegenerate system of the form (2.1) with 2N jump points.

Theorem 2.5. There exists a positive number k ≤ N , a sequence of disjoint segments
Rn := [αn, βn], and a set of k sequences of disjoint nonempty intervals Ci

n ⊂ Rn, i =
1, . . . , k, such that the following properties hold (see Figure 2).

1. |Rn| = O(e−Cn).
2. αn = O(1/n).
3. For any small ε that does not belong to the union of the Rn, the system has

exactly two hyperbolic periodic trajectories, stable and unstable, and the unstable
one is canard.

4. For any small ε in Ci
n the system has exactly i pairs of hyperbolic periodic tra-

jectories (stable and unstable), and all the periodic trajectories are canard.
5. For any small ε > 0 the total number of limit cycles that perform 1 revolution

along the y-axis does not exceed 2k.

Proposition 2.6. For every ε ∈ Ci
n the measure of the basin of attraction (repulsion)

of every canard cycle is uniformly separated from zero.

Figure 2. Domains on the ray ε > 0.

The number k depends on the shape of the slow curveM and the values of the integrals
of the function f ′

x over special sets of arcs of the slow curve and can be calculated explicitly
from the system.

2.3. A lower estimate for the number of canard cycles. We consider a system of
the form (2.1) that has four folds: two of them are forward jump points, and two reverse
jump points. By Theorem 2.5 this system has at most two pairs of canard cycles. In this
subsection we state explicit conditions under which the system has exactly two pairs of
canard cycles (or equivalently, two attracting canard cycles).

We consider the case depicted in Figure 1. The other possible mutual positions of the
jump points can be considered in a similar fashion.

We introduce the notation

(2.4) Φ(U) =

∫
U

f ′
x|(x(y),y,0) dy,

where U is some arc of the slow curve M and x = x(y) defines the graph of this arc. By
emitting two close trajectories from a neighbourhood of the beginning of this arc and
integrating the variational equation for them, it is easy to see that this integral defines
the rate of ‘convergence’ (or ‘scattering’) of the trajectories over the time of motion near
the arc. This integral is negative if U is an attracting arc, and positive if U repels.
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Theorem 2.7. Suppose that a nondegenerate system of the form (2.1) corresponds to
Figure 1 and the following additional relations hold, called ‘balancing conditions’:

1. Φ(G+E) + Φ(BG−) > 0.
2. Φ(G+F ) + Φ(DE) + Φ(BG−) < 0.

Then in Theorem 2.5 the number k of pairs of canard cycles is maximal and given by
N = 2.

3. The Poincaré map: overview of the proof

3.1. A panoramic view of the proof. In this subsection we present, at a descrip-
tive level, the arguments we use to prove the main result and give references to the
corresponding places in the paper.

We shall follow the main ideas of [3]. The key tool in the subsequent analysis is
the Poincaré map Pε from the transversal Γ := {y = −π} to itself along the phase
curves (2.1). Since g ≡ 1 this map is a diffeomorphism of the circle and defined every-
where. Its periodic (and in particular, fixed) points correspond to periodic trajectories of
the system. We denote the graph of the map Pε by γε. The fixed points of the Poincaré
map correspond to the intersection points of the graph with the diagonal D := {y = x}.

In practice, at almost all the points of the preimage of the circle (with the exception
of a small arc), the map Pε has a derivative that is close to 0, that is, it is strongly
contracting. At the same time, the remaining small arc is strongly expanded under
the action of Pε and its image is almost the whole circle; at the points of this arc the
derivative of the Poincaré map can be very large.

Geometrically this corresponds to the graph γε being contained in the union of two
thin narrow strips: vertical and horizontal; see Figure 5. The width of the strips is
exponentially small together with ε (Lemma 3.1). The strips are constructed in such a
way that all the points of the graph contained in the vertical strip correspond to canard
solutions of the system.

Outside the rectangle that is the intersection of the strips, the slope of the graph
is either very small (the graph is almost horizontal) or very large (the graph is almost
vertical). Thus points of the graph γε at which the derivative of Pε is equal to 1 (we
call them neutral) can only be located inside that rectangle. The neutral points divide
the graph γε into several arcs, on each of which the second derivative of the Poincaré
map preserves its sign. Geometrically this means that in that rectangle the graph has
the form of a ‘staircase’ with steps of various width and height (Lemma 3.6).

The maximal number of points where the diagonalD intersects the graph γε is bounded
above by the number of neutral points (Rolle’s theorem). When D passes through the
next neutral point in turn, the next pair of canard cycles in turn is either born or
destroyed: how many there can be altogether depends on the mutual position of the
neutral points (on the width and height of the ‘steps’).

The information on the derivatives of the Poincaré map we need to analyse the neutral
points is obtained from the following geometric considerations. We consider the base strip
in the phase space bounded by the vertical circles passing through the right-most and
left-most jump points and containing the slow curve M .

Any trajectory passing through a fixed point of this strip w �∈ M , in forward time
hits a stable part of the slow curve, goes to the right along this part to a jump point,
undergoes a jump, and then it either exits the base strip or hits another stable part and
moves along it to the next jump point; the process repeats until it exits the strip. In
reverse time the trajectory hits an unstable part of the slow curve, moves to the left along
it to a reverse jump point, undergoes a reverse jump, and either exits the base strip or
hits another unstable part, and so on, until it exits the strip. Thus, the trajectory passes
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near some arcs of the stable and unstable parts of the slow curve (see Figure 1 and the
construction in §5.2).

At the point w a switch happens called a ‘canard jump’: to the left of this point the tra-
jectory moves near stable segments, and to the right near unstable. When it moves near
stable (unstable) segments, the convergence (scattering) of trajectories accumulates. The
derivative of the Poincaré map is determined by the sum of the integrals

∫
f ′
x(x, y, 0) dy

(cf. (2.4)) over those arcs (see Lemma 5.4, as well as the notation introduced in (5.3)).
Consider the trajectory passing through a point (x,−π) ∈ Γ. This trajectory under-

goes at most one ‘canard jump’. Depending on its direction (downwards or upwards),
the canard jump shifts to the right or to the left as x increases. In the first case the
derivative of the Poincaré map increases, since time increases while the trajectory passes
near unstable parts of the slow curve. Similarly, in the second case the derivative of the
Poincaré map decreases. Switching between the increasing regime and the decreasing
regime happens when the canard jump reaches some fold point on the slow curve (see
the heuristic description in §5.1).

Thus, the derivative of the Poincaré map is piecewise monotonic, and the number of
intervals of monotonicity does not exceed the number of fold points of the slow curve
(see Lemma 3.5 and its proof in §5). This proves that the number of neutral points (and
therefore also of canard cycles) does not exceed the number of fold points. An explicit
construction (see §6) can be used to show that the maximal number of canard cycles is
realized on an open set of systems (Theorem 2.2).

3.2. Structure of the proof. The proof of the main results is divided into a series of
lemmas, which we state in the following subsection. Lemmas 3.1 (on the graph) and 3.2
(on monotonicity) repeat the analogous lemmas in [3, 5] almost word for word (there
are insignificant modifications). They enable us to prove parts 1–4 of Theorem 2.5 for
k = 1 (that is, to prove the existence of attracting canard cycles for small values of
the parameters). This part of the proof hardly differs from the proof of the analogous
assertions for the case of a convex slow curve. Lemmas 3.5 and 3.6 enable us to prove
the main results (Theorems 2.5 and 2.7) in full generality. §3.4 is devoted to deriving
these theorems from the lemmas stated before.

In §4 we present the requisite facts about normal forms and estimates for the deriva-
tives of the Poincaré map.

The more subtle analysis that enables us to prove Lemmas 3.5 and 3.6 and, using them,
to estimate the number of canard cycles being born and to prove part 5 of Theorem 2.5,
as well as Theorem 2.7, requires us to obtain estimates for the second derivative of
the Poincaré map. This analysis is substantially different from the convex case and
constitutes the main contents of this paper (§5). We consider the effects related to non-
convexity by using a simple example (see the heuristic description in §5.1). Then we
analyse the general case and prove Theorems 2.5 and 2.7 (see §§5.2–5.4).

In §6 we prove Theorem 2.2.
The technical assertions we need to estimate the derivatives of the Poincaré map are

proved in §7.

3.3. Basic facts and notation. In this subsection we introduce some notation we will
use in the paper and state several lemmas describing the properties of the Poincaré map.

The following lemma formalizes the assertion that the graph of the Poincaré map is
contained in the union of two narrow strips (see Figure 5).

Lemma 3.1 (the graph). There exist constants c±1,2 > 0 such that for any sufficiently

small ε > 0 there are intervals D+
ε and D−

ε in the inverse image and the image of the
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map Pε, respectively, that have the following properties.

1. |D±
ε | = O(e−c±1 /ε).

2.
∣∣P ′

ε

∣∣∣∣
S1\D+

ε
= O(e−c+2 /ε).

3.
∣∣(P−1

ε )′
∣∣∣∣
S1\D−

ε
= O(e−c−2 /ε).

4. Consider the strips Π+
ε := D+

ε × S1 and Π−
ε := S1 × D−

ε . The graph γε is
contained in their union: γε ⊂ Π+

ε ∪ Π−
ε .

The proof of this lemma for the case of a convex slow curve was given in [5] and carries
over to the general case without changes, since it does not use the fact of convexity in
any essential way.

Figure 3. Orientation of arcs.

The following lemma formalizes the assertion that the graph γε moves monotonically
to the left and upwards as ε → 0+. To state it we need to recall some notation used in
[5].

Consider arbitrary points a and b on the oriented circle S1. They divide the circle
into two arcs. We denote by [a, b〉 the arc from the point a to the point b (in the sense
of the orientation of the circle S1) oriented in the same way as S1. We denote by 〈a, b]
the same arc oriented in the opposite way (see Figure 3).

We denote by P
[a,b〉
ε the Poincaré map along the phase curves of the system (2.1) from

the transversal y = a to the transversal y = b in forward time (that is, along the arc

[a, b〉). We set P
〈a,b]
ε := (P

[a,b〉
ε )−1. This map is the Poincaré map in the reverse time

from the transversal y = b to the transversal y = a, which is emphasized by the notation
for the arc (the direction of the angular bracket indicates the direction of time).

In what follows, in all expressions containing the signs ±, either only the upper signs
or only the lower signs should be read.

Recall that G± denote the left-most (+) and the right-most (−) jump points (we call
them the principal reverse and forward jump point, respectively; they are uniquely de-
termined due to the nondegeneracy conditions; see §2.2). Suppose they have coordinates
(σ±, τ±), respectively (the slow curve M is contained in the strip {τ+ ≤ y ≤ τ−}). For
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Figure 4. Nonconvex slow curve of a fast-slow system on the torus; the
slow motion is directed horizontally.

some small fixed positive δ+ and δ− we define the following objects:

1. The transversals Γ± intersecting the slow curve M near the principal jump points
(see Figure 4):

Γ± := S1 × {α±},
where α± = τ± ± δ±.

2. Segments J+ and J− of the transversals Γ± intersecting the unstable and stable
parts of the slow curve, respectively.

3. The segments D±
ε , whose existence is asserted in Lemma 3.1:

D+
ε := P 〈−π,α+]

ε (J+), D−
ε := P [α−, π〉

ε (J−), D±
ε = [p±ε , q

±
ε 〉.

Thus, we have chosen the segment J+ which appears in Definition 2.4 of a canard solution;
this completes the definition. All the trajectories intersecting the segment D+

ε also
intersect J+ and therefore are canard.

We further denote by A+
ε and A−

ε the points of the graph γε that lie over the endpoints
of the segment D+

ε (see Figure 5):

A−
ε := (p+ε , Pε(p

+
ε )), A+

ε := (q+ε , Pε(q
+
ε )),

and by E−
ε and E+

ε , the upper left and the lower right corners of the rectangle Kε :=
D+

ε ×D−
ε :

E−
ε := (p+ε , q

−
ε ), E+

ε := (q+ε , p
−
ε ).

Let Cε be the lift to the universal cover of the torus of the point Cε, which depends
continuously on ε (here Cε means one of the points A±

ε , E
±
ε defined above). We also

denote Δ(C) := y(C)− x(C) for some point C on the universal cover of the torus.
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Figure 5. The graph of the Poincaré map.

Lemma 3.2 (monotonicity). The following hold:

1. d
dε (x− y)(Cε) → +∞ as ε → 0+ for every choice of Cε = A

±
ε ; E

±
ε .

2. The equation Δ(E
−
ε ) = 2πn has a root ε = εn for every n, and εn = O(1/n).

Remark 3.3. It follows from the second part of the lemma that for ε = εn the diagonal

D := {y = x (mod 2πZ)}
passes through the upper left corner of the rectangle Kε.

The proof of Lemma 3.2 for the case of a convex slow curve given in [5] carries over
to the general case without any changes.

Definition 3.4. A point x is called neutral for the Poincaré map Pε if P ′
ε(x) = 1. The

corresponding point of the graph γε of the Poincaré map is also called neutral.

The geometric meaning of the following lemma is as follows: the graph of the Poincaré
map near neutral points has the form of a ‘staircase’ (see Figure 6). Below we show (see
Lemma 5.5) that the relative logarithmic sizes of its ‘steps’ do not change as ε decreases.

Lemma 3.5 (on the staircase). Under the hypotheses of Theorem 2.5, for some positive
integer K the following hold.

1. The set U := {x ∈ Γ | P ′
ε(x) ∈ [1/2, 2]} is a union of 2K disjoint arcs; the second

derivative P ′′
ε preserves its sign on each of them and changes sign when passing

from one arc to a neighbouring one.
2. The number 2K does not exceed the total number 2N of fold points of the slow

curve.
3. There is exactly one neutral point on each of these arcs. We number them cycli-

cally and denote them consecutively as ξi, i = 1, . . . , 2K. To simplify the notation
we also set ξi+2K ≡ ξi.

4. We have U ⊂ D+
ε and all the points ξi lie inside the rectangle Kε.

5. For any two points ξi, ξj , ξi �= ξj, the expression Δ(ξi)−Δ(ξj) is nonzero and
its sign is independent of ε.

6. For any point ξi we have ±(Δ(A
±
ε )−Δ(ξi)) > 0.

Lemma 3.6 (the step). Under the hypotheses of Theorem 2.7 the number 2K in the
preceding lemma takes the maximal value 4.
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Figure 6. The rectangle Kε (shaded) and the neutral points on the
graph of the Poincaré map.

Lemmas 3.5 and 3.6 will be proved in §5.

3.4. Domains on the straight line ε. In this subsection we derive Theorems 2.7 and
2.5 from the lemmas stated in the preceding subsection.

Proof of Theorem 2.5. We define segments Rn as follows:

(3.1) Rn :=
{
ε ∈ (R+, 0) | Δ(E

+

ε ) ≤ 2πn ≤ Δ(E
−
ε )

}
= [αn, βn].

With Rn thus defined, it follows from Lemmas 3.1 and 3.2 that parts 1, 2, and 3 of
Theorem 2.5 hold. The proof of this fact carries over from [5] without changes.

Consider the function ϕε(x) = Pε(x) − x and some lift of it ϕε(x), which depends
continuously on ε, to the universal cover. Consider the segments Kε := Δ(Kε) =

[Δ(E
−
ε ),Δ(E

+

ε )] and Lε := [Δ(A
−
ε ),Δ(A

+

ε )] (see Figure 6). Obviously, Lε ⊂ Kε. By
part 3 of Lemma 3.5, the derivative ϕ′

ε(x) vanishes at the neutral points xk(ε) = x(ξk(ε)),
k = 1, . . . , 2K. By part 6 of the same lemma, uk(ε) = ϕε(xk(ε)) = Δ(ξk) ∈ Lε. Part 5
of the same lemma implies that the order of the points uk(ε) does not change as ε → 0+.
Thus the points uk(ε) divide the circle into 2K intervals; we denote these intervals by
Ij(ε), j = 1, . . . , 2K. By part 1 of Lemma 3.5, for every b ∈ Ij(ε) the function ϕε(x)− b



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CANARD CYCLES IN GENERIC FAST-SLOW SYSTEMS ON THE TORUS 185

has a fixed even number of simple zeros for a given j; we denote it by 2lj . When b passes
one of the points uk(ε), the number of zeros increases or decreases by two.

Proposition 3.7. There exists a unique j such that lj = 0.

This proposition will be proved below. Applying it yields that lj ≤ K for any j.
We denote by k the maximum of all the lj . Then the number of roots of the equation
ϕε(x) = 0 (these correspond to fixed points of the map Pε) does not exceed 2k, which
proves part 5 of Theorem 2.5. For every i ≤ k there exists an interval Ij such that lj = i.

It follows from part 2 of Lemma 3.2 on monotonicity that for ε = εn = O(1/n) the
upper endpoint of the segment Kε passes through the point 2πn. We set

(3.2) C̃i
n := {ε ∈ Rn | Ij(ε) ∩ Lε � 2πn, lj = i}, i = 1, . . . , k.

Taking account of the continuity properties, the sets C̃i
n are nonempty and open. We

choose an interval Ci
n in each of them. By construction, for every ε ∈ Ci

n the equation
ϕε(x) = 0 has 2i roots, which are fixed points for the map Pε. Since 2πn ∈ Lε, the
diagonal D intersects the graph γε in points lying over the segment D+

ε . Consequently,
all the fixed points of the Poincaré map correspond to closed canard solutions, and we
have proved part 4 of Theorem 2.5 for the Ci

n defined here and for this k. This completes
the proof of the theorem. �

Taken together with Proposition 2.6 (which we will prove in §5.5), this gives a proof
of Theorem 2.1.

Proof of Theorem 2.7. It follows from Lemma 3.6, as well as from Proposition 3.7, that
under the hypotheses of Theorem 2.7 the circle is divided into 4 intervals Ij , and conse-
quently, the number k in the statement of Theorem 2.5 is equal to 2. Indeed, under the
passage to a neighbouring interval the number lj changes by 1, and therefore if lj = 0,
then lj+2 = 0 or lj+2 = 2. But the first case is impossible by Proposition 3.7. This
proves Theorem 2.7. �

Proof of Proposition 3.7. By choosing coordinates (different ones in the image and pre-
image), without loss of generality we set Pε(0) = 0 and consider the fundamental square
[0, 2π]2. Then the graph γε becomes the graph of a monotonically increasing function
which connects the lower left-hand corner of the fundamental square with the upper
right-hand one. Consider points A,B ∈ γε. We assume without loss of generality that
x(B) > x(A), and consequently (by monotonicity), y(B) > y(A). We claim that |Δ(A)−
Δ(B)| < 2π. Indeed:

(3.3)

|Δ(A)−Δ(B)| = |(y − x)(A)− (y − x)(B)|
= |(x(B)− x(A))− (y(B)− y(A))|
≤ max(x(B)− x(A), y(B)− y(A))

≤ max(x(B), y(B))

< 2π.

It follows from (3.3) and continuity arguments that Δ(γε) is a segment whose length is
less than 2π. By projecting Δ(γε) onto the circle R/2πZ, we obtain an arc. Denoting the
complement of this arc by I, we have: for every b in I (and only for them!) the diagonal
Δ(x, y) = b does not intersect γε, that is, ϕε(x) = b has no solutions. Since the maximum
and minimum of Δ|γε

are attained at the points ξk, the interval I is represented in the
form I = [Δ(ξi),Δ(ξj)] for some i, j. There are no other points Δ(ξk) on the interval.
Consequently, I coincides with one of the intervals Ik for some k. �
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4. Normalization and estimates for derivatives

In this section we state the theorems on fast-slow systems that we need to estimate the
derivative of various Poincaré maps. Essentially, this section just reproduces the section
“Normalization” in [5].

For what follows we shall need two theorems on normal forms of fast-slow systems on
the torus that were proved by Guckenheimer and Ilyashenko.

4.1. Nonlinear rotation. The following theorem describes the structure of fast-slow
dynamics on the torus outside a neighbourhood of the slow curve.

Theorem 4.1 ([3]). Consider the vector field on the cylinder x ∈ S1 = R/Z, y ∈ R

defined by the system

(4.1) ẋ = f(x, y, ε), ẏ = εg(x, y, ε), f > 0, g > 0.

Let a, b ∈ R, a < b, and ε > 0. Then the Poincaré map P
[a,b〉
ε from Γa = {y = a} to

Γb = {y = b} has the form

(4.2) P [a,b〉
ε (x) = G1

ε ◦ (G2
ε(x) + T (ε)),

where T (ε) → ∞ and G1,2
ε are diffeomorphisms of the circle, G1,2

ε → G1,2 as ε → 0+,
and G1,2 are also diffeomorphisms of the circle.

In other words, the correspondence map from a fixed vertical transversal to a fixed
vertical transversal can be reduced by a change of coordinates in the image and preimage
to a rotation through an angle T (ε) that tends to infinity as ε → 0+. It is important
to point out that the corresponding changes of coordinates have bounded derivatives as
ε → 0+ and tend to smooth changes of coordinates.

Theorem 4.1 was proved in [3, Theorem 2, p. 35].

4.2. Normalization near the slow curve. The following theorem shows that near
the slow curve outside a neighbourhood of a jump point the system (2.1) is smoothly
equivalent to a linear system.

Theorem 4.2 ([3]). Consider the system

(4.3) ẋ = f(x, y, ε), ẏ = εg(x, y, ε), g > 0.

Suppose that the corresponding fast system has a curve of hyperbolic fixed points (a nonde-
generate slow curve). Then for small ε > 0 in a neighbourhood of the curve of fixed points
(outside fixed neighbourhoods of jump points) the system is smoothly orbitally equivalent
to the family

(4.4) ẋ = a(y, ε)x, ẏ = ε.

The proof of this theorem can be found in [3, Theorem 3, p. 38]. It follows from
Fenichel’s theorem (see [6], and also [7] and [8]) that in a neighbourhood of the stable
(unstable) part of the slow curve M− (M+) there exists a smooth invariant manifold S−

ε

(S+
ε ) that can be represented as the graph of a function x = s−(y, ε) (x = s+(y, ε)). In

the normalizing coordinates, this manifold, which is called the true slow curve, is given
by the equation x = 0. It follows from the variational equation that the function a(y, ε)
in Theorem 4.2 has the form

(4.5) a(y, ε) = f ′
x(s(y, ε), y, ε).

Remark 4.3. Actually, the true slow curves S±
ε are not uniquely determined. However,

the distance between such curves is of order O(e−C/ε) (that is, they are exponentially
close), and we can choose any of them.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CANARD CYCLES IN GENERIC FAST-SLOW SYSTEMS ON THE TORUS 187

4.3. The Poincaré map near a jump point. We state one more result, which will
let us estimate the derivative of the Poincaré map near a jump point very roughly.

Remark 4.4. In what follows the letter C (without indices) will denote positive constants
independent of ε. They can be different in different formulae.

Lemma 4.5. Consider the fast-slow system

(4.6) ẋ = f(x, y, ε), ẏ = ε, (x, y) ∈ S1 × R.

Then for sufficiently small ε the Poincaré map P
[a,b〉
ε : Γa → Γb satisfies the estimate

(4.7) | ln(P [a,b〉
ε (x))′| < C

b− a

ε
.

Proof. Let x = x(y;x0, ε) be the phase curve passing through a point (x0, a) for a given ε.
Since f ′

x is bounded on the torus (above and below), it follows from the variational
equation with respect to the initial conditions that

(4.8) (P [a,b〉
ε (x0))

′ = exp

(
1

ε

∫ b

a

f ′
x(x(y;x0, ε), y, ε) dy

)
< e

C
ε (b−a).

A similar estimate holds for the inverse map. By taking the logarithm we obtain the
required estimate for the absolute value. �

This lemma will be used to obtain rough estimates for the derivatives in a neigh-
bourhood of a jump point. A more precise analysis of the behaviour of the system in a
neighbourhood of a jump point is given by the following theorem.

Theorem 4.6 ([5, Theorem 4.3]). In the notation of §3.3 (see p. 182), let T± = J±∩M .
Then for some λ > 0 the following holds:

ln

(
d

dx
P 〈−π,α+]
ε (x)

)
=

Φ(T+G+) +O(ελ)

ε
, x ∈ J+,(4.9)

ln

(
d

dx
P [α−,π〉
ε (x)

)
=

Φ(T−G−) +O(ελ)

ε
, x ∈ J−,(4.10)

where O(ελ) is uniform with respect to x.

5. An estimate for the second derivative of the Poincaré map

In this section we prove Lemmas 3.5 and 3.6.

5.1. Heuristic description. We consider a system of the form (2.1) corresponding to
Figure 1 (see p. 177). In this subsection we describe its dynamics heuristically and show
the reasons for two pairs of canard solutions to appear under the balancing conditions.

Recall (see §4.2) that in a neighbourhood of every part of the slow curve M consisting
of regular singular points of the fast motion, for small ε there exists an invariant manifold
that is O(ε)-close to the corresponding part of M , which is called the true slow curve. For
a fixed part of the slow curve, the true slow curves are not uniquely determined, but they
are exponentially close to one another, and we can choose any of them. Consider maximal
true slow curves corresponding to the parts G+E, ED, andDG−. We denote them by S1,
S2, and S3, respectively. We extend them beyond the corresponding jump points (forward
and backward in time; see Figure 7). We introduce the notation: uj := Sj∩J+, j = 1, 2, 3.
Note that the pairwise distances between the points uj are exponentially small.

We consider the trajectory passing through a point u ∈ J+. Recall that the dynamics
in a neighbourhood of a part of the slow curve is described by a linear equation of the
form (4.4). In the case of an unstable part this means that the trajectory spends some
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Figure 7. True slow curves in a system with two folds: the scale is
considerably distorted for illustration.

time near the true slow curve (written as x = 0 in the normalizing coordinates), after
which it leaves the neighbourhood of the unstable part of the slow curve and in time
O(ε) again enters a neighbourhood of the slow curve. Here two variants are possible:

1. The trajectory enters a neighbourhood of a stable part of the slow curve and
then moves along it; we call this phenomenon a canard jump.

2. The trajectory enters a neighbourhood of a reverse jump point and undergoes a
reverse jump, then moves for some time near an unstable part of the slow curve
(see Figure 7, the trajectories passing near u3 and intersecting J+

D are of this
type).

It follows from the normal form (4.4) that, as the trajectory moves in a neighbourhood
of an unstable part of the slow curve, the derivative of the solution with respect to the
initial condition u increases (‘scattering’ is accumulated), and as the trajectory moves
along a stable part it decreases (‘contraction’ is accumulated). By the chain rule, the
derivatives on different parts of the trajectory, mentioned above, contribute to the de-
rivative of the Poincaré map Pε. Thus, to estimate the second derivative of the Poincaré
map it is necessary to examine what proportion of the time the trajectory spends near
stable parts of the slow curve, and what proportion near unstable parts.

The following cases are possible.

1. u < u1. As the initial condition approaches u1 from below, the time spent by
the trajectory near the stable part G+E increases by comparison with the time
spent near the unstable part G−G+. Thus, the derivative increases and attains
its maximum at the point u1 (in this case the trajectory coincides with the true
slow curve S1).

2. u ∈ (u1, u2). As the initial condition moves from u1 to u2, the trajectory spends
less time in a neighbourhood of the unstable part G+E by comparison with
the stable part ED. The derivative decreases and attains its minimum at the
point u2.

3. u ∈ (u2, u3). As the initial condition moves from u2 to u3, the trajectory spends
more time in a neighbourhood of the unstable part DG− by comparison with
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the unstable part ED. The derivative increases and attains its maximum at the
point u3.

4. u > u3. As the initial condition moves away from u3, the trajectory spends less
time in a neighbourhood of the unstable part DG− by comparison with the stable
part G−G+. The derivative decreases up to an exponentially small quantity.

It is easy to see that if the derivative Pε is greater than 1 for the trajectory passing
through u1, and it is less than 1 for the trajectory passing through u2, then there exist
four points at which this derivative takes the value 1. Indeed, at the endpoints of the
interval J+ this derivative is exponentially small, since the corresponding trajectories
spend almost all the time near stable parts of the slow curve. On the other hand, near
the point u3 this derivative is exponentially large, since the trajectory spends almost
all the time near unstable parts of the slow curve. Thus, on each of the intervals 1–4
described above there exists a neutral point. This condition is necessary and sufficient
for Lemmas 3.5 and 3.6 to hold in this case.

As we shall show below (see Lemma 5.4 in the next subsection), the logarithmic
derivative of the Poincaré map is determined by the sum of integrals of the form (2.4)
over the corresponding arcs of the slow curve near which the trajectory passes. Thus,
the conditions stated in the preceding paragraph can be reformulated in the form of the
balancing conditions in Theorem 2.7.

5.2. Limit behaviour of trajectories and estimates for derivatives. In this sub-
section we carry out certain necessary constructions and state several auxiliary assertions
about estimating the derivatives of the Poincaré map. They let us formalize the heuristic
description given in the preceding subsection.

Let y∗ ∈ [y(G+), y(G−)〉. We consider the trajectory passing through a point w :=
(x∗, y∗) �∈ M . Let it be given by the equation x = x(y;w). In reverse (forward) time,
over time of order O(ε) this trajectory is attracted to some unstable (stable) part of the
slow curve M after which, in view of the normal form (4.4), it moves slowly along this
stable part to the left (to the right) to a neighbourhood of a jump point.

If the jump point reached after a reverse (forward) jump does not coincide with G+

(G−), the trajectory is attracted to some other unstable (stable) part of the slow curve,
and then the process continues until a neighbourhood of G+ (G−) is reached. Then,
after a reverse (forward) jump, the trajectory leaves the neighbourhood of the slow curve
and, performing a large number of revolutions, reaches the transversal Γ = {y = −π} =
{y = π} at the point with coordinate x0 = x(−π;w) (Pε(x0)). In terms of the preceding
subsection, this trajectory undergoes a canard jump at the point w.

The dynamics we have just described, of the trajectory emitted from some point,
motivates the following definition.

Definition 5.1. Suppose that a point w = (x∗, y∗) does not lie on the slow curve
(see Figure 8). We emit from w the vertical rays in the direction of fast motion, and
in the opposite direction, until intersection with the slow curve M . We denote the
intersection points by F− := F−(w) and F+ := F+(w), respectively; henceforth the
sign (−) corresponds to forward time, and the sign (+) to the reverse. Consider the arc
of the slow curve M from the point F− (F+) to a forward (reverse) jump point. We
denote the second endpoint of this arc by G± := G±(w). We denote this arc by [F−, G−〉
([G+, F+〉); the orientation is positive with respect to the direction of the y-axis. We
define the contour Z(w) corresponding to the point w to be the following set of arcs
of M :

(5.1) Z(w) := [G+
l , F

+
l 〉+ · · ·+ [G+

1 , F
+
1 〉︸ ︷︷ ︸

Z+(w)

+ [F−
1 , G−

1 〉+ · · ·+ [F−
m , G−

m〉︸ ︷︷ ︸
Z−(w)

,
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where
F±
i+1 = F±(G±

i ), G±
i+1 = G±(G±

i ),

F±
1 = F±(w), G±

1 = G±(w),

G+
l = G+, G−

m = G−.

Figure 8. The contour of a point w for a system with a complicated
nonconvex slow curve.

Using traditional terminology (see [9]) we can say that a contour is the union of the
nonvertical parts of the corresponding singular trajectory. The contour Z−(w) (Z+(w))
consists of the arcs of M near which the trajectory emitted from the point w spends
almost all the time, until a forward (reverse) jump at the points G− (G+). We set

Φ±(w) := Φ(Z±(w)) =

∫
Z±(w)

f ′
x(x, y) dy,(5.2)

Φ(w) := Φ(Z(w)) =

∫
Z(w)

f ′
x(x, y) dy.(5.3)

Definition 5.2. The value of the function Φ(Z(w)) is called the integral of the contour
Z(w). A contour Z(w) with zero integral (Φ(Z(w)) = 0) is called a neutral contour.

Below we shall show (see Lemma 5.6) that the derivative of the Poincaré map can be
close to 1 if and only if the corresponding trajectory passes near a neutral contour. To
formalize this assertion, we need to introduce an additional definition, which is motivated
by the following observation: the value Φ(w) does not change if the point w moves along
a vertical segment without crossing the slow curve M .

We consider the set Ĝ of jump points (forward and reverse). By the nondegeneracy
conditions (2.2), this is a finite discrete set.

We impose the additional nondegeneracy condition

(5.4) {y(z) | z ∈ G : Φ(z) = 0} ∩ {y(g) | g ∈ Ĝ} = ∅

on the system. In other words, the canard jumps of neutral contours do not lie over jump
points.
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Recall that U = {x ∈ Γ | P ′(x) ∈ [1/2, 2]}. Also recall that the vertical strip between
the two principal jump points Π := S1 × [y(G+), y(G−)] is called the base strip. For
every jump point apart from the principal ones, we also consider the maximal vertical
interval containing this point and not intersecting M in other points. We consider the
union of M with these intervals, and the complement of this union with respect to the
base strip (see Figure 9):

Σ := M ∪
⋃
g∈ ̂G

(F+(g), F−(g))× {y(g)},(5.5)

Σ := Π\Σ,(5.6)

where by the interval (F+(g), F−(g)) we mean the one of the two arcs which does not
contain points of M other than g.

We point out that by the nondegeneracy conditions (2.2) the set Σ has finitely many
connected components. We also fix some small δ and consider the δ-neighbourhood Σδ

of the set Σ. We set

(5.7) Σδ := Π\Σδ.

We require δ to be chosen sufficiently small so that the intersection of every connected
component of Σ with W is nonempty and intersects any vertical circle y = const in a
segment (or the empty set).

In Σ we identify points (x, y) and (x′, y) if and only if [x, x′〉 × {y} ∩ M = ∅. The
resulting set is denoted by V . We introduce the topology induced from T in it and
denote the set of connected components by V . This is a finite set (by the nondegeneracy
conditions).

Figure 9. The graph G in the simplest nonconvex case.

It is easy to see that the pair G = (Ĝ, V ) is a planar graph if we assume that points

g1, g2 ∈ Ĝ are connected by an edge v ∈ V if and only if there exists a representative
of v that is a smooth curve connecting these points. Thus, this graph admits natural
embeddings into T. We fix such an embedding (see Figure 9) by demanding that any non-
empty intersection of any connected component of Σδ/2 with a vertical segment contains
a point in the corresponding arc of the graph. It is easy to see that the graph G thus
embedded into T is a natural domain of definition of the function Φ(w).
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Lemma 5.3. For every point w ∈ Σδ the following holds: the trajectory emitted from
this point in forward (reverse) time enters Σδ/2 in time that is bounded above and does
not leave this neighbourhood until it exits the strip Π.

We consider the trajectory passing through a point x ∈ Γ. Suppose that the trajectory
intersects Σδ. In this case it also intersects some edge v ∈ V at some point z ∈ Σδ/2.
By Lemma 5.3, as well as by the properties of the embedding of the edges V , this point
is unique for sufficiently small ε. We denote it by z(x). The function z(x) may not
be defined if the trajectory does not leave Σδ other than through the boundaries of the
strip Π.

Lemma 5.4. For some λ > 0 the following representations for the derivatives of the
Poincaré maps hold at the points corresponding to the trajectory passing through w =
(x∗, y∗) ∈ Σδ:

log
d

dx
P [y∗,π〉
ε

∣∣∣
x=x∗

=
Φ−(w) +O(ελ)

ε
,(5.8)

log
d

dx
P 〈π,y∗]
ε

∣∣∣
x=x∗

= −Φ+(w) +O(ελ)

ε
,(5.9)

log
d

dx
Pε(x0) =

Φ(w) +O(ελ)

ε
,(5.10)

where O(ελ) is estimated uniformly with respect to w.

Lemma 5.5. Consider points w1, w2 ∈ Σδ; suppose that the trajectories passing through
them in reverse time intersect the transversal Γ at points x1, x2, respectively. Let

(5.11) I± = I±(w1, w2) := Φ
(
Z±(w1) ∩ Z±(w2)

)
.

Then

|x1 − x2| = O∗
(
exp

(
−I+ +O(ελ)

ε

))
,(5.12)

|Pε(x1)− Pε(x2)| = O∗
(
exp

(
I− +O(ελ)

ε

))
;(5.13)

that is, the corresponding distances are asymptotically bounded above and below by the
exponentially small expressions indicated above. The corresponding estimates are uniform
with respect to w1, w2.

Lemma 5.6. For every x ∈ U the point z(x) is defined and there exists a point zn :=
zn(x) on some edge of the graph G such that Φ(zn) = 0 and

(5.14) |z(x)− zn(x)| = O(ελ).

Lemma 5.7. For every x ∈ U ,

(5.15) sgn (P ′′
ε (x)) = −sgn (f(z(x), 0)).

In other words, the sign of the second derivative of the Poincaré map at neutral points
is determined by the direction of the canard jump.

All the lemmas stated above will be proved below (see §7).
5.3. Neutral points. In this subsection we derive parts 1 and 3–6 of Lemma 3.5 from
the lemmas stated in the preceding subsection.

It is easy to see that the contour Z(z) varies continuously as the point z moves
on some edge v of the graph G. This implies that the function Φ(z) is continuous
on the edges of the graph. Moreover, Φ(z) is monotonic with respect to y(z). Thus,
on every edge v there exists at most one zero of Φ(z) or, in other words, at most one



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CANARD CYCLES IN GENERIC FAST-SLOW SYSTEMS ON THE TORUS 193

neutral contour intersecting v. Together with Lemma 5.7, which proves that every neutral
contour corresponds to exactly one neutral point, this gives parts 1 and 3 of Lemma 3.5.
Part 4 follows from parts 2 and 3 of the lemma that deals with the graph, since outside
Kε the derivative of the Poincaré map is exponentially small or large.

To prove part 5, we consider neutral points ξ1 = (x1, Pε(x1)), ξ2 = (x2, Pε(x2)) on the
graph of the Poincaré map and put (see Lemma 5.6)

z1 := z(x1), z2 : = z(x2),

z1n := zn(x1), z2n : = zn(x2).

We assume without loss of generality that x2 > x1. By Lemma 5.5,

(5.16)

Δ(ξ1)−Δ(ξ2) = Pε(x1)− x1 − (Pε(x2)− x2)

= x2 − x1 − (Pε(x2)− Pε(x1))

= O∗
(
exp

(
−I+(z1, z2) +O(ελ)

ε

))

−O∗
(
exp

(
I−(z1, z2) +O(ελ)

ε

))

= O∗
(
exp

(
−I+(z1n, z

2
n) +O(ελ)

ε

))

−O∗
(
exp

(
I−(z1n, z

2
n) +O(ελ)

ε

))
,

where the last equation holds by (5.14).
Hence the sign of Δ(ξ1)−Δ(ξ2) is determined by the sign of I−(z1n, z

2
n) + I+(z1n, z

2
n).

Thus part 5 holds if we impose finitely many additional nondegeneracy conditions on the
system:

(5.17) I−(zin, z
j
n) + I+(zin, z

j
n) �= 0, i �= j,

for all pairs of neutral points zi �= zj .
Part 6 is proved in a similar fashion. Consider an interval J+ := [p, q〉 intersecting

the unstable part of the slow curve M near the jump point G+. Consider the trajectory
passing through its lowest point p. We point out that the contour Z+(p) consists of one
arc of the unstable part of the slow curve, which can be made arbitrarily small by the
choice of J+. We also consider an arbitrary neutral point ξ and set zn = zn(ξ). Similarly
to (5.16) we have

(5.18)

Δ(A−
ε )−Δ(ξ) = O∗

(
exp

(
−I+(p, zn) +O(ελ)

ε

))

−O∗
(
exp

(
I−(p, zn) +O(ελ)

ε

))
,

and the second summand dominates, since the exponent of the exponential in the first
summand can be made arbitrarily small.

The assertion for the second endpoint q of the segment J+ is proved similarly. Part 6
is proved. This completes the proof of all the parts of Lemma 3.5, except for part 2. We
shall prove this in the next subsection.

5.4. An upper bound for the number of neutral contours. To estimate the num-
ber of neutral contours, that is, the number of zeros of the function Φ(z), we need to
investigate the global continuity of this function on its entire domain of definition. As
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we observed in the preceding subsection, Φ(z) is continuous on the edges of the graph G.
We would like to extend it to a continuous function on the entire domain of definition.

First we return to the simple example we looked at in §5.1. It is easy to see that when
the initial point x goes right around a vertical circle, the canard jump point z(x) of the
corresponding trajectory goes all around the graph G passing over every edge once but
visiting each of the jump points (apart for the principal ones) twice. The function Φ(z)
varies continuously as the jump point goes around, but in general it can take different
limit values at the same jump point. Thus, in order to be able to work with Φ(z) as with
a continuous function, we have to ‘unglue’ the graph G into a circle which accords with
the way the jump point goes around. This circle is the natural domain of definition of
the function Φ(z), and the function is continuous on it. This observation motivates the
following construction.

Figure 10. Contours close to a through limit contour of a jump point G
(on the left) and a support limit contour (on the right).

It is easy to see that all the jump points, except for the principal ones, belong to one of
the four classes depending on the jump type (forward/reverse) and the direction of motion
after the jump (upwards/downwards); see Figure 11. Consider the jump point G depicted
in Figure 10 (this is one of the four possible configurations; the others are considered in
a similar way; see below) and the part of the graph G situated in a neighbourhood of
this point. We denote the edges of the graph entering G by N , W , S, E, as shown in
the picture.

As the point z approaches the jump G along the edge E, the limit position of the
corresponding contour Z(z) does not contain arcs of the slow curve in a neighbourhood
of G. The contour Z(z) tends to the same limit position as z approaches G along the
edge S. We call such a limit contour a through contour of the point G, and the pair of
edges E–S a through pair (in the picture on the left).

By contrast, when z tends to G along the edge N , the limit position of the contour
Z(z) contains the whole unstable arc entering G. The contour Z(z) tends to the same
position as z moves along the edge W . We call such a limit contour a support contour
for the point G, and the pair of edges N–W a support pair (in the picture on the right).

It is easy to show that the situation is similar for the other types of jump points:
the edges of the graph G entering a jump point are divided into two pairs, and the
corresponding contour has the same limit position for each pair. Figure 11 shows pairs of
edges for all four configurations: if both edges in a pair lie on one side of the vertical line
passing through a jump point, then it is a support pair; otherwise it is a through pair.
As the point z goes around the graph in the natural way described at the beginning of
the subsection, it enters a vertex along one of the paired edges and exits along the other.

We now modify the graph G as follows. We replace every vertex G that is not a
principal jump point by a pair of vertices Gt and Gp. We assume that the vertex Gt is
connected with the through pair of edges entering G (we call it a through vertex), and
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Figure 11. Through and support pairs of edges for various types of
jump points.

the vertex Gp with the support pair of edges (a support vertex). We denote the resulting

graph by G̃.
Extending the function Φ(z) to the points Gt and Gp by continuity we obtain a

function that is continuous on the entire graph G̃. It can be shown that the resulting

graph G̃ is connected and so it is a topological circle, but we will not prove this here, as
we do not need it for the proof.

It is easy to see that the function Φ(z), which is monotonic on the edges of G̃, is

also monotonic at the through vertices of G̃ (since Φ(z) increases monotonically as y(z)
increases) and has local extrema at the support points, as well as at the principal jump
points. Since the total number of support points and principal jump points is equal to the
total number of jump points of the original system and the function Φ(z) is monotonic
between any two support points, the number of zeros of Φ(z) is bounded by the number
of jump points, which proves part 2 of Lemma 3.5, and thus also Theorem 2.5.

We note that the balancing conditions in the statement of Theorem 2.7 can be re-
formulated as follows:

1. The integral of the support contour corresponding to the jump point E (see
Figure 1) is positive.

2. The integral of the support contour corresponding to the jump point D is nega-
tive.

Since the integral of the support contour corresponding to G+ is always negative (this
contour contains only stable parts of the slow curve), and the integral of the support
contour corresponding to G− is always positive, in this case the function Φ has 4 ex-
tremum points with alternating signs, and therefore it has exactly 4 zeros. This proves
Lemma 3.6, and thus also Theorem 2.7.

5.5. Basins of attraction. In this subsection we discuss and prove Proposition 2.6.
It follows from Lemma 3.1 that the fixed points of the Poincaré map corresponding

to canard cycles lie on an exponentially narrow interval. The ‘basin of attraction’ of
an attracting point (on the transversal Γ) is the interval between two repelling points
neighbouring this attracting point. Thus, every attracting point, apart from one, has a
basin of attraction with exponentially small measure (a similar assertion can be made
for repelling points and their basins of repulsion).

The situation is different on the whole torus: the measure of basins of attraction
(repulsion) of the corresponding canard cycles on the whole torus is separated from
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zero. Indeed, for every ε, the neutral trajectories divide the phase space into disjoint
domains. At most one canard cycle may be situated between two consecutive neutral
jumps. Furthermore, the neutral jumps themselves pass near different neutral contours,
and the measure of the domains between them is separated from zero. This implies that
any attracting canard cycle has at least one ‘neighbouring’ repelling cycle such that the
measure of the domain between them (contained in the basin of attraction) is separated
from zero.

This argument proves Proposition 2.6.

6. The maximal number of canard cycles

In this section we prove Theorem 2.2 on the existence of an open set of systems having
the maximal number of canard solutions.

Figure 12. (a) A system with a maximal number of canard solutions for
N = 3 and (b) an approximate graph of the Poincaré map (a fragment
is enlarged).

Recall that to every neutral contour there corresponds a neutral point on the graph
of the Poincaré map such that when it crosses the diagonal D a pair of canard cycles is
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born or destroyed (see §3.4). Thus the total number of canard solutions does not exceed
the total number of neutral points, and it is maximal in the case where firstly N births
happen consecutively (D is crossed by neutral points at which the graph is convex up),
and then N destructions (at the corresponding points the graph is convex down). In
other words, this means that the necessary and sufficient conditions for the existence of
a maximal number of canard cycles are:

1. The number of neutral contours, 2K, is maximal and is equal to 2N , the number
of folds of the slow curve.

2. If S1
Δ is the circle onto which the torus T2 ⊃ γε is projected by the map Δ, then

S1
Δ is divided into the union of two disjoint arcs, one of which contains the images

of all the neutral points that ‘give birth’, and the other contains the images of
all the ‘destroying’ neutral points; this condition is equivalent to the fact that
during the motion along the circle there are N births, and then N destructions,
of pairs of canard limit cycles.

The first condition is equivalent to the presence of 2N zeros of the function Φ(z) on
the graph G, which in turn is equivalent to the fact that the sign of Φ(z) alternates at

the support vertices of the graph G̃ (see §5.4). In other words, this condition is given by
a system of strict inequalities. By part 5 of Lemma 3.5 and its proof (see p. 193), the
second condition is also equivalent to a system of strict inequalities on the integrals Φ
over some arcs of M .

Hence the set of systems that have the maximal number of canard solutions is open
(as a solution of a system of strict inequalities). It remains to prove that it is nonempty.
To do this, for every N it is sufficient to construct a concrete example of a system that
has the required property. The rest of this section is devoted to this construction.

It is easy to see that for condition 2 to hold it is sufficient that all the neutral points,
apart from one, lie on one exponentially narrow arc and the ‘height’ and ‘width’ of the
‘steps’ on the graph of the Poincaré map diminish consecutively: the width of a step
is less than its height, and the height of the next step is less than the width of the
preceding one; furthermore, the segments between two consecutive neutral points tend
to vertical/horizontal ones (see Figure 12 (b)). In this case the diagonal with slope 1
passing through the ‘highest’ step (in the picture, this is the point ξ′3) passes over all
the ‘birth-giving’ neutral points and under all the ‘destroying’ ones, since the location
(over or under the diagonal) of every next neutral point is determined by the sum of an
alternating series in which every successive term is greater in absolute value than the
preceding one. The sum of the terms of such a series also alternates.

We construct a system for which the graph of the Poincaré map has this property.
Consider a system that has 2N folds. We label them in order as we go around the

slow curve M ‘clockwise’ by G−
1 (a principal jump point), G+

1 (a principal reverse jump
point), G−

2 , G
+
2 , . . . , G

−
N , G+

N . (We have adopted a new notation because it works better
in this situation than the notation in §5.2.)

We require that the folds be situated so that the following relations hold (see Fig-
ure 12 (a)):

(6.1) y(G+
1 ) < y(G+

2 ) < · · · < y(G+
N ) < y(G−

N ) < · · · < y(G−
2 ) < y(G−

1 ),

where all the inequalities are imposed on the coordinates of points on the fundamental
square, which contains the whole of M .

We construct some vertical circle Γ′ lying between G+
N and G−

N . We denote the
intersection points of Γ′ with the slow curveM as follows (listed from the bottom up): H1,
H ′

1, . . . , HN , H ′
N . We denote the contour of any point situated on the interval (Hi, H

′
i) by

Z ′
i, and the contour of any point on the interval (H ′

i, Hi+1) by Zi+1 (see Figure 12 (a)).
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We require that all these contours be neutral. We denote the corresponding neutral
points of the graph of the Poincaré map by ξi and ξ′i. To avoid confusion, the second
coordinate of points ξ ∈ γε is denoted by p (thus, ξ ≡ (x(ξ), p(ξ))).

For every jump point G±
i , i = 2, . . . , N , we consider the corresponding fall point and

denote it by F±
i−1.

It follows from Lemma 5.5 that the ‘height of the step’ ξi+1 is an exponentially
small quantity, and the exponent of the exponential is proportional to the integral
Φ((Z ′

i)
− ∩ Z−

i+1) (recall that the upper index “+” (“−”) of a contour Z means the left
(right) half of the contour with respect to a canard jump point w; see Definition 5.1 and
(5.1)):

(6.2) hi := p(ξi+1)− p(ξi) = O∗

(
exp

(
−h̃i + o(1)

ε

))
, i = 1, . . . , N − 1,

where h̃i := −Φ((Z ′
i)

− ∩ Z−
i+1) > 0. Similarly, for the ‘width’ of the steps:

(6.3) wi := x(ξ′i)− x(ξi) = O∗
(
exp

(
−w̃i + o(1)

ε

))
, i = 2, . . . , N,

where w̃i := Φ((Z ′
i)

+ ∩ Z+
i ) > 0. For the required relations to hold it is sufficient that

the following is satisfied:

(6.4) h1 > w2 > h2 > · · · > hN−1 > wN

or, equivalently, for a sufficiently small ε:

(6.5) h̃1 < w̃2 < h̃2 < · · · < h̃N−1 < w̃N .

We claim that we can ensure that this relation holds by choosing the values of the
integrals Φ over arcs of M suitably. To do this we set

(6.6)

Φ(F−
1 G−

1 ) = −1;

Φ(G+
i F

+
i ) = 2, i = 1, . . . , N − 1;

Φ(F−
i G−

i ) = −2, i = 2, . . . , N − 1.

It is easy to see that

(6.7)

(Z ′
i)

− ∩ Z−
i+1 =

i⋃
j=1

(F−
j G−

j ), i = 1, . . . , N − 1,

(Z ′
i)

+ ∩ Z+
i =

i−1⋃
j=1

(G+
j F

+
j ), i = 2, . . . , N,

whence

(6.8) h̃i = 2i− 1, w̃i = 2i− 2,

and (6.5) follows immediately.
It remains to show that the contours Zi and Z ′

i can be made neutral. In addition, we
set:

(6.9)

Φ(HNG−
N ) = −2;

Φ(G+
NH ′

N ) = 1;

Φ(HiF
−
i ) = −(2N − 2i), i = 1, . . . , N − 1;

Φ(F+
i H ′

i) = 2N − 2i− 1, i = 1, . . . , N − 1.
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Consider the contour Z ′
i, i = 1, . . . , N − 1:

(6.10) Z ′
i =

i⋃
j=1

(G+
j F

+
j ) ∪ (F+

i H ′
i) ∪ (HiF

−
i ) ∪

i⋃
j=1

(F−
j G−

j ).

Thus,

(6.11)

Φ(Z ′
i) = w̃i+1 +Φ(F+

i H ′
i) + Φ(HiF

−
i )− h̃i

= 2i+ 2N − 2i− 1− (2N − 2i)− (2i− 1)

= 0.

Similarly, we can show that Φ(Zi) = 0 for i = 1, . . . , N − 1. A similar direct verification
also shows that Φ(ZN ) = 0 and Φ(Z ′

N ) = 0.
The slope of the segments [ξ′i, ξi+1] tends to infinity, since the distance x(ξi+1)−x(ξ′i) is

exponentially small compared to p(ξi+1)−p(ξ′i) (this is easy to see if we apply Lemma 5.5
to the corresponding half-contours). Similarly it can be shown that the slope of the
segments [ξi, ξ

′
i] tends to zero.

The theorem is proved.

7. Nonlinear effects

In this section we prove the technical lemmas stated in §5.2.

7.1. Singular trajectories.

Proof of Lemma 5.3. We only need to prove the assertion of the lemma corresponding to
forward time. The proof for reverse time is carried out by applying the same arguments
to the system with time reversed.

We consider the contour Z−(w) and add the vertical segments connecting w with
F−(w) to it and also the vertical segments connecting the jump points g with the corre-
sponding fall points F−(g). We obtain a continuous curve, which starts at the point w,
and ends at the principal jump point G−; it is entirely contained inside the domain Σδ

for any δ > 0. This curve is called a singular trajectory of the system; we denote it by

Ẑ−(w). It is well known (see [9]) that under the nondegeneracy conditions listed in §2
the true trajectory of the fast-slow system passing through the point w tends uniformly
to the corresponding singular trajectory as ε → 0 (this can be shown by explicitly con-
structing an arbitrarily small capturing neighbourhood of the singular trajectory). Thus,
moving near the singular trajectory, for sufficiently small ε, the trajectory cannot leave
the neighbourhood Σδ/2 until it exits the strip Π. �

7.2. Exponential contraction. In what follows we need two classical theorems describ-
ing the behaviour of the true slow surface near a jump point, which we state here.

Theorem 7.1 ([9]). Suppose that a system of the form (2.1) has a nondegenerate jump
point at the origin. There exists a small r > 0 such that for every μ ∈ (0, 1/3) the true
slow curve x = s(y, ε) over the segment [−r,−εμ] satisfies the following equation:

(7.1) s(y, ε) = s(y) +O(ε2/3−μ/2).

To derive this theorem from formula (16.10) in the given reference, it is enough to
make a trivial change of coordinates.

Theorem 7.2 (ibid., see also [4]). Under the hypotheses of the preceding theorem the
continuation of the true slow curve s(y, ε) beyond the jump point intersects a horizontal
section x = −const at a point with coordinate y = O(ε2/3).
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Lemma 7.3. Consider some vertical segment

J = {(x, y) | x ∈ I, y = y∗},
intersecting a stable part of the slow curve M and not intersecting the δ-neighbourhood
of any unstable point of M (in particular, J is separated from jump points). The contour
Z− = Z−(w) is obviously independent of the choice of the point w ∈ J for fixed J . Then
for some λ > 0 the following representation holds for the derivative of the Poincaré map:

(7.2) ln
d

dx
P [y∗,π〉
ε

∣∣∣
x=x∗

=
Φ−(Z−) +Oδ(ε

λ)

ε
, x∗ ∈ I,

where the remainder term Oδ(ε
λ) is bounded by Cδε

λ, where Cδ depends only on δ and
is independent of the choice of the interval J and the point x∗.

Proof. We fix w and consider the trajectory y = y(x;w, ε) passing through w. We fix
some sufficiently small δ′ > 0.

Next, for every arc of the slow curve [Fj , Gj〉 contained in the contour Z− we define
several vertical circles that are given by their y-coordinate: Γi

j = {y = yij} (see Figure 13;
some of these circles will depend on ε), where

y0j : = y(Fj),(7.3)

y3j : = y(Gj)− δ′,(7.4)

y4j : = y(Gj)− ε1/4.(7.5)

We set Ai
j := [Fj , Gj〉 ∩ Γi

j . By Theorem 4.2, the normal form (4.4) is in force near

the arc [Fj , A
3
j〉. We define the following domain Uj :

(7.6) Uj :=
{
(x, y) | y ∈ [y0j , y

3
j 〉, |x̃| < b

}
,

where x̃ is the normalizing coordinate in the corresponding domain.
Suppose that the trajectory enters the neighbourhood Uj at a point Bj (that is,

|x̃(Bj)| = b; if j = 1 and the point w is already contained in the domain U1, then we
assume B1 = w). We set y2j := y(Bj).

Figure 13. (a) Part of the trajectory; (b) enlarged fragment of the
domain U1 in normalized coordinates.

For every jump Gj that occurs in the contour Z−(w) but is not the principal jump G−,
we fix some horizontal segment Δj intersecting the jump interval (GjFj+1) (of the two
vertical arcs with endpoints at these points, we choose the one that does not intersect M
at its inner points) that is at a distance of at least δ from points of the slow curve M .
Suppose that the trajectory intersects Δj at a point Ej (we assume that E0 := w). We
set y1j := y(Ej).
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We represent the Poincaré map P
[y∗,π〉
ε as the composite

(7.7) P [y∗,π〉
ε : Γ1

1
P 1

→ Γ1
2

P 2

→ · · · P
m−1

→ Γ1
m

Pm

→ Γ,

where Pj = P
[y1

j ,y
1
j+1〉

ε and y1m+1 := π. We now prove that for every j = 1, . . . ,m and for
some λ > 0 we have the representation

(7.8) ln
d

dx
Pj |x=x(y1

j ;w,ε) =
Φ([Fj , Gj〉) +O(ελ)

ε
.

When taking the derivative in (7.8), the decomposition (7.7) is regarded as fixed. To
prove (7.8) we represent each of the maps Pj in turn in the form of a composite:

Pj : Γ
1
j

P 1
j→ Γ2

j

P 2
j→ Γ3

j

P 4
j→ Γ4

j

P 5
j→ Γ1

j+1,(7.9)

Pm : Γ1
m

P 1
m→ Γ2

m

P 2
m→ Γ3

m

˜P 3
m→ Γ,(7.10)

where j = 1, . . . ,m− 1.

Next we estimate the logarithmic derivative of each of the maps P i
j = P

[yi
j ,y

i+1
j 〉

ε .
Since the point Ej lies outside a neighbourhood of the unstable part of the slow curve,

from Ej the trajectory of the system enters the fixed neighbourhood Uj+1 of the stable
part of the slow curve in a time that is bounded above. This implies that

(7.11) y2j − y1j = O(ε),

and Lemma 4.5 gives

(7.12)

∣∣∣∣ ln d

dx
P 1
j

∣∣∣∣ < C

for some universal constant C independent of w.
In view of the normal form (4.4), in a suitable system of coordinates the map P 2

j is
linear, and its derivatives can be calculated by integrating the normal form explicitly.
We have

(7.13) ln
d

dx
P 2
j =

Φ([A2
j , A

3
j〉)

ε
.

It follows from Theorem 7.2 that y1j − y0j = O(ε2/3). Together with (7.11) we also have

y2j − y0j = O(ε2/3). Because the integral is smooth with respect to the integration limits,

this implies that we have the representation Φ([A2
j , A

3
j〉) = Φ([Fj , A

3
j〉) +O(ε2/3), where

the estimate for the remainder term is independent of the choice of the point w.
We observe that the map P 2

j is an exponential contraction that can be made arbitrarily

strong by comparison with a possible expansion on the interval Γ3
j → Γ4

j by choosing

a sufficiently small δ′ (this follows, in particular, from the estimate of Lemma 4.5).
This means that the trajectory intersects Γ3

j at a point that is exponentially close to

the intersection point of the true slow curve with Γ3
j , after which the trajectory remains

exponentially close to the true slow curve as it proceeds along the entire interval Γ3
j → Γ4

j .
From the variational equation, in the notation of Theorem 7.1, we have

(7.14)

ln
d

dx
(P 4

j ) =

∫ y4
j

y3
j

f ′
x(x(y), y, ε) dy =

∫ y4
j

y3
j

f ′
x(s(y, 0), y, ε) dx+O(ε)

=

∫ y4
j

y3
j

f ′
x(s(y), y, 0) +O(ε2/3−μ/2) =

∫ y0
j+1

y3
j

f ′
x(s(y), y, 0) +O(ε1/4)

= Φ(A3
j , Gj) +O(ε1/4).
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From the relation y0j+1 − y4j = O(ε1/4), using Lemma 4.5, the derivative of the map P 5
j

admits the estimate:

(7.15)

∣∣∣∣ ln d

dx
P 5
j

∣∣∣∣ = O(ε1/4)

ε
.

The derivative of the map P̃ 3
m is estimated by using Theorem 4.6:

(7.16) ln
d

dx
P̃ 3
m =

Φ(A3
mG+) +O(ελ)

ε
for some λ > 0.

Using the chain rule and taking the sum of the representations obtained for the log-

arithmic derivatives of the functions P i
j , as well as of the function P̃ 3

m, we obtain the
required representation (7.8). The estimate for the remainder term is uniform with re-
spect to the point w. The lemma is proved. �

Proof of Lemma 5.4. Equation (5.8) follows directly from Lemma 7.3. Equation (5.9) is
proved in a similar fashion, by applying this lemma to the system with reversed time,
and equation (5.10) follows from the two preceding equations using the chain rule. �

Proof of Lemma 5.5. It is sufficient to prove relation (5.13). Consider the left-most point
Fj0 of the intersection of the contours Z−(w1) ∩ Z−(w2). By the nondegeneracy condi-
tion (2.3), one of the contours Z−(w1), Z

−(w2) contains an arc which contains the point
Fj0 together with some neighbourhood of the slow curve M . We assume without loss of
generality that this arc is [F 1

k,2, G
1
k,2〉 ⊂ Z−(w2).

Consider an interval J2
j0

lying on the circle Γ2
j0

for the contour Z−(w1) (see the proof
of Lemma 7.3 in the preceding subsection) and intersecting the stable part of the slow
curve. The trajectory x = x1(y, ε) passing through the point w1 intersects this interval at
a point with fixed coordinate b �= 0 in the normalizing chart. The trajectory x = x2(y, ε)
passing through the point w2 passes near the arc [F 1

k,2, G
1
k,2〉 and up to the moment

when it intersects J2
j0

has time to be exponentially attracted to the true slow curve:

x2(y
2
j0
, ε) = O(e−C/ε). Introducing the notation Iε := [x1(y

2
j0
, ε), x2(y

2
j0
, ε)] ⊂ J2

j0
we

obtain the estimate

(7.17) |Iε| = b+O(e−C/ε).

Applying Lemma 7.3 to the map P
[y2

j0
,π〉

ε on the interval J2
j0

we obtain a uniform estimate
for the derivative, and from Lagrange’s theorem on linear increments we obtain the

required estimate for the length of the image P
[y2

j0
,π〉

ε (Iε). �

7.3. Neutral trajectories and neutral contours.

Proof of Lemma 5.6. Recall that under the hypotheses of the lemma, x ∈ U , that is,
P ′
ε(x) ∈ [1/2, 2]. Suppose that the value z(x) is not defined; that is, the corresponding

trajectory does not leave the domain Σδ in any way other than through the boundary
of the strip Π. In this case the trajectory passes near some arcs of the stable and the
unstable parts of the slow curve, and the switching between arcs is a result of forward
and reverse jumps, or a canard jump passing near fold points of the slow curve. It is easy
to see that the trajectory can pass from the unstable part of the slow curve to the stable
part only once and then it will move near to the stable part. Furthermore, the trajectory
passes near the limit contour Z0 (a support contour if there are no canard jumps, and a
through contour otherwise).

We represent Σδ as the union

(7.18) Σδ = Mδ ∪ Vδ,
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where Mδ denotes the δ-neighbourhood of the slow curve M , and Vδ the union of the
δ-neighbourhoods of the vertical segments passing through the jump points (see (5.5)).
When moving in the domain Mδ\Vδ, the trajectory passes a distance at most δ from
the arcs contained in the contour Z0. Here its dynamics are determined by the normal
form (4.4). The time it moves in Vδ is bounded by the quantity 2Nδ/ε, where 2N is the
total number of fold points.

By the variational equation, as well as by Theorem 4.6, the derivative of the Poincaré
map at the point x has the following representation:

(7.19) lnP ′
ε(x) =

1

ε

∫
γ(x)

f ′
x(u(y), y, ε) dy + o(1/ε),

where γ(x) is the intersection of the segment of the trajectory x = u(y) which passes
through the point x with the strip Π. Taking account of the arguments we have given
above, as well as Lemma 4.5, when we integrate we can replace the curve γ(x) by the
contour Z0:

(7.20) lnP ′
ε(x) =

Φ(Z0) +O(2Nδ) + o(1)

ε
.

Choosing δ sufficiently small, we can ensure that the first summand in the numerator
dominates and the derivative P ′

ε is exponentially small or large, contrary to the assump-
tion P ′

ε(x) ∈ [1/2, 2]. This contradiction proves that the function z = z(x) is defined at
all points of U .

In this case, relation (5.14) is an immediate consequence of Lemma 5.4 and the con-

dition
d

dy
Φ(z) �= 0, where y = y(z), which follows from the nondegeneracy condition

f ′
x(x, y, 0) �= 0, which is valid for any point (x, y) ∈ M that is not a fold point (see
(2.1)). �

7.4. Estimating the second derivative.

Figure 14. Neutral jump.

Proof of Lemma 5.7. Consider the trajectory with initial condition x ∈ U . We set z =
z(x) and zn = zn(x) (see Lemma 5.6) and consider the contour Z = Z(zn(x)). Consider
the jump points G±

d := G±(z). Let I+ (I−) be a vertical segment at distance δ from

the jump point G+
d (G−

d ) that intersects the unstable (stable) part of the slow curve and
does not intersect the stable (unstable) part of the slow curve (see Figure 14). We set
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y± = y(I±). We represent the Poincaré map in a neighbourhood of the point x as the
composite

(7.21) Pε : Γ
R→ I+

˜P→ I−
Q→ Γ.

It follows from the chain rule that

ln
d

dx
Pε(x) = lnQ′ ◦ P̃ ◦R(x) + ln P̃ ′ ◦R(x) + lnR′(x),(7.22)

d

dx
ln

d

dx
Pε(x) =

d

dx
lnQ′ ◦ P̃ ◦R(x) +

d

dx
ln P̃ ′ ◦R(x) +

d

dx
lnR′(x).(7.23)

As the logarithm is monotonic, to prove the lemma it is sufficient to determine the sign
of (7.23). We will show that in this decomposition the second term dominates and find
its sign.

We estimate the third term of the expression (7.23). It follows from the variational
equation that

(7.24) lnR′(x) =
1

ε

∫ y+

−π

f ′
x(ϕ(y, ε;x), y, ε) dy,

where x = ϕ(y, ε;x) defines the trajectory with the initial condition x ∈ Γ. Differentiating
we obtain

(7.25)
d

dx
lnR′(x) =

1

ε

∫ y−

−π

f ′′
xx(ϕ(y, ε;x), y, ε)X(y;x) dy,

where X(y;x) = d
dxϕ(y, ε;x) = P

[−π,y〉
ε (x).

Let Z+ = Z+(zn) and let Ĝ+ be the set of (reverse) jump points occurring in the
contour Z+ (that is, the set of reverse jump points the trajectory under consideration
passes close to). We define a set Wδ as follows:

(7.26) Wδ =
⋃

G∈ ̂G+

Uδ(y(G)),

where Uδ(y(G)) = [y(G)− δ, y(G) + δ〉.
It is easy to see that for y �∈ Wδ the point w(y) = (ϕ(y, ε;x), y) satisfies the hypotheses

of Lemma 7.3 and following from (7.2), for the system with the reversed time, we have
the representation:

(7.27) X(y;x) = exp

(
Φ(Z+(w(y))) +Oδ(ε

λ)

ε

)
.

We estimate X(y;x) for y ∈ Wδ. Let y ∈ Uδ(y
∗), where y∗ = y(G) for some G ∈ Ĝ+. It

follows from the chain rule that

(7.28) X(y;x) =
d

dx
P [−π,y∗−δ〉
ε · d

dx
P [y∗−δ,y〉
ε .

The first factor is estimated by (7.27). The second factor is roughly estimated by using
the variational equation (see Lemma 4.5):

(7.29)
d

dx
P [y∗−δ,y〉
ε = O(eO(δ)/ε)).

Thus, for y ∈ Wδ we have the estimate

(7.30) X(y;x) = exp

(
Φ(Z+(w(y∗ − δ))) +Oδ(ε

λ) +O(δ)

ε

)
,

and we can assume that Oδ(ε
λ) +O(δ) = O(δ).
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Since Φ(Z+(w(y))) increases monotonically with respect to y, the right-hand sides
of (7.27) and (7.30) do not exceed the quantity

(7.31) X(y+;x) = exp

(
Φ(Z+(w(y+))) +O(δ)

ε

)
.

Substituting the estimate we have obtained into the integral (7.25) and taking into ac-
count that |f ′′

xx| < C, since f is smooth and the phase space is compact, we obtain

(7.32)

∣∣∣∣ ddx lnR′(x)

∣∣∣∣ < C

ε
exp

(
Φ(Z+(w(y+))) +O(δ)

ε

)

= exp

(
Φ(Z+(w(y+)) +O(δ))

ε

)
.

By similar arguments, since Φ(Z−(w(y))) decreases with respect to y, it is easy to obtain
the estimate

(7.33)
d

dx
lnQ′(x) = exp

(
O(δ)

ε

)
.

We denote the part of the contour Z lying on the left of I− by Z̃:

(7.34) Z̃ := Z ∩ {y ∈ [−π, y−〉}.
Representing the first summand in (7.23) in the form

(7.35)
d

dx
lnQ′ ◦ P̃ ◦R(x) =

d

dx
(lnQ′(x)) · d

dx
(P̃ ◦R(x))

and using Lemma 7.3 to estimate the derivative P̃ ◦R(x) = P
[−π,y−〉
ε , we obtain

(7.36)

∣∣∣∣ ddx lnQ′ ◦ P̃ ◦R(x)

∣∣∣∣ < exp

(
Φ(Z̃) +O(δ)

ε

)
.

We estimate the second summand in (7.23) from below. The chain rule and rela-
tion (7.27) applied at the point y = y+ give the representation

(7.37)

d

dx
ln P̃ ′ ◦R(x) =

d

dx
ln P̃ ′(x) ·R′(x)

=
d

dx
ln P̃ ′(x) · exp

(
Φ(Z+(w(y+))) +O(ελ)

ε

)
.

We now estimate d
dx ln P̃ ′(x). The normal form (4.4) holds near the parts of the

slow curve (stable and unstable) between the intervals I±. We denote the normalized
coordinate near the unstable part of the slow curve by ξ, and near the stable part by η.

Let the map P̃ : I+ → I− be given in the normalizing coordinates as ξ �→ η = η(ξ).
A canard jump at a point z may happen in one of the two directions — upwards or

downwards — depending on the sign of f(z, 0). We consider the case where a canard
jump happens in the ‘downwards’ direction (that is, f(z, 0) < 0; the opposite case is
considered in a similar fashion). In this case, ξ < 0 (that is, the trajectory passes below
the corresponding true slow surface and jumps downwards).

Consider the neighbourhoods of the stable and unstable parts of the slow curve that
are given by the relations |ξ| < b and |η| < b for some fixed b > 0. Suppose that the
trajectory leaves the neighbourhood of the unstable part of the slow curve at the point
(ξ = −b, y = y+0 ) and enters the neighbourhood of the stable part of the slow curve at
the point (η = b, y = y−0 ). Obviously, y−0 = y+0 + O(ε). Lemma 5.6 also implies that
y10 = y(zn) + O(ελ). Let L+ be the arc of the unstable part of the slow curve lying
between I+ and y+0 , and L− the arc of the stable part of the slow curve lying between y−0
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and I−. Also let L̃+ be the arc of the unstable part of the slow curve lying between I+

and y(zn), and L̃− the arc of the stable part of the slow curve lying between y(zn) and I−.
As shown in [3] (for the general case, see formula (4.41) in [5]),

(7.38)
d

dξ
ln η′(ξ) > −1

ξ
,

and the normal form (4.4) implies that

(7.39) −ξ = b exp

(
−Φ(L+)

ε

)
= b exp

(
−Φ(L̃+) +O(ελ)

ε

)
.

Thus, we have the estimate

(7.40)
d

dξ
η′(ξ) > C exp

(
Φ(L̃+) +O(ελ)

ε

)
,

where C = 1/b > 0. The map which passes to the normalizing coordinates has uniformly
bounded derivatives with respect to ε and therefore can only change the constant C.

It is easy to see that the contour Z+(w(y+)) is complemented by the arc L̃+ to the
contour Z+(wn). Thus, by substituting (7.40) into (7.37) we obtain

(7.41)
d

dx
ln P̃ ′ ◦R(x) > C exp

(
Φ(Z+(wn)) +O(ελ)

ε

)
.

Obviously, Φ(Z+(wn)) > Φ(Z+(w(y+))) (since the arc L̃+ of the unstable part of the

slow curve was added into the contour on the right-hand side) and Φ(Z+(wn)) > Φ(Z̃)

(since the arc L̃− of the stable part of the slow curve was added into the contour on
the right-hand side). Consequently, we can choose δ so small that the exponent of the
exponential in (7.41) is greater than in (7.32) and (7.36). This proves that the sign of the
second derivative of the Poincaré map Pε in the case under consideration (the trajectory
jumps downwards) is positive. The same arguments can be used to show that the sign
is negative for f(zn, 0) > 0. This proves the lemma. �
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