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1 Introduction

Cette thèse est consacrée à l'étude des systèmes dynamiques, unmodèle mathématique
pour décrire l'évolution de ce que ce passe dans le « vrai monde ». Informellement, on
cherche à décrire une telle évolution soit par une application (qui associe à un état du
système son état une minute plus tard), soit par une équation différentielle (qui donne
l'évolution de l'état du système en temps continu).

Pour les systèmes à temps continu, on peut aussi considérer une famille d'applications
𝜑𝑡, qui transforment l'état du système à un moment en son état 𝑡 secondes plus tard.

Que se passe-t-il si les équations qui décrivent le système sont un peu plus compli-
quées que dans les exemples le plus basiques ? D'un côté, effectivement, on sait d'après
le théorème de Cauchy qu'une solution de cette equation différentielle existe, est unique
et dépend de manière lisse du point de départ. Mais de l'autre côté, une telle application
ne peut prèsque jamais être écrite en termes de fonctions élementaires et de leurs inté-
grales. L'un des premiers exemples est donné par le théorème de Liouville : les solutions
de l'équation �̇� = 𝑥2 − 𝑡 ne peuvent pas être écrites sous une telle forme.

Quand-même, malgré l'absence d'une possibilité d'écrire une solution sous forme ex-
plicite, on peut établir certaines propriétés d'un système dynamique — ce qui fait l'objet
de la théorie qualitative des systèmes dynamiques.

Voici quelques questions qu'on peut poser et auxquelles on peut eventuellement ré-
pondre sans résoudre le système correspondant.

• Combien de points d'équilibre et d'orbites périodiques possède le système ?
• Quels sous-ensembles de l'espace des phases attirent de nombreux points lorsque le

temps tend vers l'infini ?
• Qu'est-ce qu'il arrive à une trajectoire du système après une petite perturbation de la

condition initiale ?
• Qu'est-ce qu'il arrive au portrait de phase (c'est-à-dire à la partition de l'espace des

phases en les orbites du système) après une petite perturbation de la loi d'évolution ?

La thèse est décomposée en deux parties, consacrées à deux problèmes différents.
Dans la première partie de la thèse, qu'on expose au Chapitre 2 « Bony attractors » (« At-
tracteurs osseux »), on discute les attracteurs des systèmes dynamiques. Considérons un
système dynamique à temps discret. Officieusement, on dit qu'un sous-ensemble fermé
𝐴 ⊂ 𝑋 de l'espace des phases est un attracteur si

• les images d'un sous-ensemble suffisamment grand de l'espace des phases par les ité-
rations 𝐹𝑛 tendent vers 𝐴 lorsque 𝑛 tend vers l'infini ;

• 𝐴 est le minimum fixé pour attirer son domaine d'attraction.
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Il y a plusieurs formalisations de cette notion. Nous en allons présenter quelques-unes
dans la Section 2.1 « Preliminaries » du Chapitre 2.

A quoi ressemble un attracteur d'un système dynamique ? Dans les cas les plus simples
un attracteur d'un système dynamique est un ensemble discret (voire un seul point, par
exemple, pour l'application 𝑥 ↦ 𝑥/2). Il existe des exemples bien connus de systèmes
dynamiques dont les attracteurs ressemble localement à une varitété lisse (par exemple, le
produit Сartésien d'un difféomorphisme d'Anosov et une contraction), ou à un ensemble
de Cantor (par exemple, le solénoïde de Smale-Williams), ou à un livre de Cantor (par
exemple, l'attracteur de Lorenz).

Nous allons construire un ensemble ouvert de difféomorphismes 𝐹∶ 𝕋3 → 𝕋3 du tore
𝕋3 ayant le comportement suivant. Tout d'abord, 𝐹 possède une fibration invariante de
l'espace des phases 𝕋3 en cercles. Ensuite, 𝐹 a un attracteur unique qui croise la plupart
des fibres sur un seul point (la partie graphique de l'attracteur), et coupe la reste des fibres
sur les arcs (les os). Il n'y a rien de nouveau dans ces deux propriétés. Le fait intéressant
à propos de cette attraction est que l'ensemble des os est grand mais pas trop gros. Plus
précisément, les conditions suivantes sont satisfaites1.

• Tant la partie graphique que la partie osseuse sont denses dans l'attracteur.
• L'ensemble des os n'est pas dénombrable.
• La mesure de l'attracteur est nulle (donc l'ensemble des os n'est pas trop grande).

Décrivons un système dynamique ayant un attracteur osseux. L'espace des phases de
ce système n'est pas une variété : il est le produit cartésien de deux ensembles de Cantor 𝐶
et de l'intervalle 𝐼 = [0, 1].

Formellement, un système dynamique agissant sur l'espace 𝐶 × 𝐶 × 𝐼 ne peut pas
avoir un attracteur osseux dans le sens de la définition donnée ci-dessus. Nous allons donc
remplacer la fibration invariante en cercles par la fibration {pt1} × {pt2} × 𝐼.

Considérons l'espace Σ3 de toutes les suites bi-infinies 𝜔 = …𝜔−1𝜔0𝜔1… de sym-
boles 0, 1, 2 : 𝜔𝑖 ∈ {0, 1, 2}. Nous munissons Σ3 de la topologie 𝑝-adique : deux suites 𝜔
et 𝜂 sont proches si elles coincident sur un large segment [−𝑛, 𝑛] : 𝜔𝑖 = 𝜂𝑖 pour |𝑖| ⩽ 𝑛. On
peut vérifier facilement que cet espace est le produit cartésien de deux ensembles de Can-
tor, l'ensemble Σ3

+ de toutes les queues à droite 𝜔0𝜔1…𝜔𝑛… et l'ensemble Σ3
− de toutes

les queues à gauche …𝜔−𝑛…𝜔−2𝜔−1.
Dans notre exemple, l'espace des phases est le produit cartésien Σ3 ×𝐼, et l'application

est donnée par

𝐹∶ Σ3 × 𝐼 → Σ3 × 𝐼, (𝜔, 𝑥) ↦ (𝜎𝜔, 𝑓𝜔0
(𝑥)),

1 Pour la définition précise d'un attracteur osseuse voir Section 2.2 « Definition of a bony attractor ».
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où 𝜎∶ Σ3 → Σ3 est le décalage de Bernoulli, (𝜎𝜔)𝑖 = 𝜔𝑖+1, et les 𝑓𝑖∶ 𝐼 → 𝐼, 𝑖 = 0, 1, 2
sont données par

𝑓0(𝑥) = 0.6𝑥, 𝑓1(𝑥) = 1 − 0.6(1 − 𝑥), 𝑓2(𝑥) = 1
2𝜋

arctan(10𝑥 − 5) + 1
2

. (1.1)

Les graphes des applications 𝑓𝑖 sont esquissés à la Figure 1.1 (a). L'attracteur de sys-
tème dynamique correspondant est esquissé à la Figure 1.1 (b). La seconde figure est ob-
tenue par un script en Ruby qui a calculé l'image de l'espace des phases par 𝐹8. Dans la
seconde figure l'axe horizontal correspond à l'espace Σ3

− des toutes les queues à gauche
…𝜔−𝑛…𝜔−2𝜔−1 possible, et l'axe vertical correspond à l'intervalle 𝐼. Nous avons ignoré
l'autre coordonnée qui paramétrise les valeurs possibles de la queue à droite 𝜔0, 𝜔1, …
parce que l'intersection de l'attracteur avec la fibre {𝜔} × 𝐼 ne dépend pas des 𝜔𝑖, 𝑖 ⩾ 0.
Donc, le vrai attracteur est le produit cartésien de notre dessin et de l'ensemble de Cantor.

Pour rendre la différence entre les attracteurs osseux et non osseux plus claire nous
avons également esquissé l'attracteur (encore une fois, le facteur de l'attracteur par l'es-
pace Σ2

+) de l'application construite par les applications 𝑓0 et 𝑓1 de la même manière que
l'application 𝐹 est construite par les applications 𝑓0, 𝑓1 et 𝑓2.

𝑓0

𝑓1

𝑓2
𝐼

𝐼

𝐼

Σ3
−

𝐼

Σ2
−

(a) Les applications 𝑓𝑖 (b) Un attracteur osseux,
construite par les

applications 𝑓0, 𝑓1 et 𝑓2

(c) Un attracteur
non-osseux,

construite par les
applications 𝑓0 et 𝑓1

Figure 1.1 Les graphes des applications (1.1), un attracteur osseux et un attracteur
non-osseux

Dans le Chapitre 2, nous allons prouver que cette application a un attracteur osseux2.
Ensuite, nous allons suivre une stratégie proposée par Yu. S. Ilyashenko et A. Gorodetski
pour obtenir un ouvert de difféomorphismes 𝐶2 du tore 𝕋3 ayant un attracteur osseux.

Cette stratégie repose sur deux ingrédients importants.
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• Les partitions de Markov des difféomorphismes d'Anosov du tore 𝕋2 nous permettent
de passer des automorphismes de Σ𝑘 × 𝑆1 à des difféomorphismes du tore 𝕋3 d'un
genre particulier (« produits croisés », voir Subsection 2.1.4).

• Une stratégie élaborée par A. Gorodetski et Yu. S. Ilyashenko qui nous permet de pas-
ser des produits croisés à un ouvert dans l'espace des difféomorphismes 𝐶2. Cette stra-
tégie est basée sur le théorème de M. W. Hirsch, C. C. Pugh et M. Shub [7, Théorème
6.8] et ses améliorations obtenues par A. Gorodetski, Yu. S. Ilyashenko et A. Negut [6
and 10].

Dans le Chapitre 3 « Billiards », on discute les orbites périodiques des billards pla-
naires. Les résultats de ce chapitre ont été obtenus en collaboration avec A. Glutsyuk,
UMPA, ÉNS Lyon.

Un billard mathématique est un modèle pour décrire le mouvement d'une particule
(une boule idéale de taille nulle) dans une table de billard (dont le bord n'est pas neces-
sairement un polygone). La boule se déplace à vitesse constante à l'intérieur de la table,
et se reflète sur son bord suivant la règle standard (l'angle d'incidence est égal à l'angle
de réflexion).

Pourquoi est-il intéressant d'étudier de tels systèmes ? Il y a plusieurs raisons, parmi
lesquelles on voici trois.

D'abord, les billards apparaissent comme des modèles mathématiques dans plusieurs
problèmes physiques. Par exemple, siΩ est l'intérieur d'une chambre dont le sol, le plafond
et les murs sont des miroirs, un rayon de lumière va suivre une trajectoire du billard Ω.
Un autre modèle célèbre, qui nous ramène à un billard est un gaz idéal de Boltzmann.
Effectivement, le mouvement de 𝑁 boules qui se reflètent parfaitement elastiquement peut
être décrit par une trajectoire de billard dans un domaine Ω de l'espace ℝ3𝑁.

Ensuite, il est plus simple d'étudier certaines propriétés (comme l'ergodicité ou les
propriêtés de mélange) pour une classe spécifique de systèmes plutôt, qu'en toute généra-
lité.

Finalement, un flot de billard est un homologue naturel du flot géodésique, et dans
certains cas ses trajectoires périodiques jouent le role des géodésiques fermées. En par-
ticulier, c'est le cas pour la théorie spéctrale de l'opérateur de Laplace Δ𝑢 = ∑𝑖

𝜕2𝑢
𝜕𝑥2

𝑖
.

J. J. Duistermaat et V. Guillemin [3] ont montré qu'il y a un lien entre le comportement
des géodésiques fermées sur une variété riemanniene 𝑀 sans bord et le comportement
asymptotique des valeurs propres du problème de Dirichlet pour le laplacien. Plus tard,
V. Ivrii a montré que pour le cas d'une variété a bord, l'ensemble des géodésiques fer-
mées doit être remplacé par l'ensemble des trajectoires de billard périodiques.

2 Pour la définition formelle d'un attracteur osseux pour les applications de ce type voir Section 2.4 « Basic
example ».
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Ainsi, il s'avère qu'il existe un lien entre les valeurs propres du laplacien (c'est-à-dire,
combien d'harmoniques de haute fréquence peut avoir un tambour d'une forme donnée a)
et les trajectoires du billard correspondant. Puisqu'on peut lire et comprendre le texte prin-
cipal de la présente thèse sans comprendre ce propos, nous allons formuler le théorème de
V. Ivrii en petites charactères dans les prochains paragraphes.

Soit Ω un domaine dans ℝ𝑛 dont le bord est lisse par morceaux. Considérons le problème de Dirichlet
pour l'operateur de Laplace dans ce domaine,

Δ𝑢 = 𝑢, 𝑢|𝜕Ω = 0.

En 1911, H. Weyl a montré que le nombre 𝑁(𝜆) de valeurs propres 𝜇 qui sont plus petites que 𝜆2, admet
la formule asymptotique suivante :

𝑁(𝜆) = 𝑐0Vol𝑚(Ω)𝜆𝑚 + 𝑜(𝜆𝑚),

où 𝑐0 = 𝑐0(𝑚) est une constante connue.
Il a aussi conjecturé que

𝑁(𝜆) = 𝑐0Vol𝑚(Ω)𝜆𝑚 + 𝑐1Vol𝑚−1(𝜕Ω)𝜆𝑚−1 + 𝑜(𝜆𝑚−1),

où 𝑐1 = 𝑐1(𝑚), et Vol𝑚−1 est le volume (𝑚 − 1)-dimensionnel.
En 1975 J. J. Duistermaat et V. Guillemin [3] ont montré la conjecture de Weyl pour les varitétés sans

bord3 satisfaisant la condition géométrique suivante : la mesure de l'ensemble de géodésiques fermées est
nulle.

En 1980 V. Ivrii [13] a généralisé le résultat de J. J. Duistermaat et V. Guillemin au cas de varitétés à
bord. Il s'est révèlé que dans ce cas ce sont les trajectoires fermées de billard qui jouent le rôle des géodé-
siques fermées. Plus précisément, V. Ivrii a démontré la conjecture de Weyl pour les domaines Ω ⊂ ℝ𝑚 tels
que l'ensemble des orbites périodiques du billard correspondant est de mesure nulle.

Puis, V. Ivri a proposé la conjecture suivante.

Conjecture 1.1 (V. Ivrii, 1980) Pour tout domaine Ω ⊂ ℝ𝑚 dont le bord est une surface
𝐶∞-lisse, l'ensemble des trajectoires périodiques du billard correspondant est de mesure
nulle.

Dans le présent travail on ne discute que le cas d'un billard planaire, 𝑚 = 2. Dans
ce cas, la conjecture d'Ivrii peut être reformulée sous la forme suivante : est-il possible
de fabriquer une table de billard telle qu'un joueur qui met la boule en un point choisi au
hasard et qui la lance dans une direction choisie aussi au hasard, a une probabilité positive
d'obtenir une trajectoire périodique ? Il se trouve que cette question est équivalente à la
question suivante : peut-on fabriquer une table de billard telle que si on met la boule pres
d'un point donné (avec une précision finie) et qu'on la lance dans une direction proche

3 Nous avons formulé la conjecture de Weyl uniquement pour les domaines dans ℝ𝑚, mais en fait H. Weyl l'a
formulée pour toute variéte riemannienne. Dans ce cas il faut remplacer les volumes dans la partie droite
par certaines integrales des fonctions dépendant de la métrique.
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d'une direction donnée (aussi, avec une précision finie), ceci qu'on la périodicité de la
trajectoire ainsi obtenue ?

Quand V. Ivrii a enoncé cette conjecture dans le séminaire de Sinai, les participants lui
ont dit que cette conjecture serait montré dans quelques jours, puis dans quelques semaines,
puis dans quelques mois… La conjecture reste ouverte depuis déjà 30 ans !

Dans le Chapitre 3 « Billiards » nous allons démontrer un cas particulier de la conjec-
ture d'Ivrii. Plus précisément, nous montrerons que pour tout domaine Ω ⊂ ℝ2 dont le
bord est suffisamment lisse par morceaux, l'ensemble des trajectoires périodiques qua-
drangulaire est de mesure nulle. L'idée principale de la preuve est d'étudier la frontière de
l'ensemble des trajectoires quadrangulaires périodiques. Il s'est trouvé qu'un point géné-
rique de la frontière corresponde à une trajectoire « dégénérée ». Nous considérons toutes
les dègénérescences possibles, et nous montrons qu'il y a au plus un ensemble dénom-
brable de trajectoires dégénérées de chaque type sur le bord. Mais la frontière doit être de
la cardinalité de ℝ, et cette contradiction montre le théorème.

Je voudrais remercier Yulij Sergeevich Ilyashenko pour son support permanent pendant
mes études universitaires et doctorales, et Étienne Ghys pour les discussions et beaucoup
d'aide dans la préparation de ce texte. Si vous le comprenez, c'est grâce à Étienne ; si vous
ne le comprenez pas, c'est de ma faute.

Je voudrais aussi remercier mon co-auteur pour « Billiards » Alexey Glutsyuk, pour
son excellente collaboration. Un merci spécial à Victor Kleptsyn, qui a eu une grande in-
fluence sur mon choix du directeur de thèse il y a six ans, et qui m'a aidé dans divers
domaines entre-temps. Un merci gigantesque à ma femme Natalie Goncharuk pour sa pa-
tience et son assistance ; elle a été la première lectrice et correctrice de la plupart de ce
texte.
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2 Bony attractors

𝐼

𝐶
Figure 2.1 A sketch of
a bony attractor

In this chapter wewill construct a non-empty open set ofmaps
𝐹∶ 𝕋3 → 𝕋3 such that each map from this set has a bony at-
tractor, i. e. it has a unique attractor that consists of a graph
of a function, and a dense set of arcs (bones).

For an informal description of the phenomena of a bony
attractor see the “Introduction”. An example of a bony attrac-
tor is sketched in Figure 2.1. The phase space of this system
is 𝐶 × 𝐶 × [0, 1], where 𝐶 is a Cantor set. The horizontal
coordinate corresponds to the first 𝐶, the vertical one corre-
sponds to [0, 1], and actually one should multiply this picture
by another Cantor set 𝐶 to obtain the attractor. For more de-
tails about this picture see either Chapter 1 “Introduction”, or
Section 2.4 “Basic example”.

In the first section “Preliminaries” we will give the required definitions and introduce
some useful notions. Next, in Section 2.2 “Definition of a bony attractor” wewill introduce
the formal notion of a bony attractor.

Section 2.3 “General strategy: from random systems to diffeomorphisms” describes
a strategy proposed by A. Gorodetski and Yu. S. Ilyashenko. This strategy allows us to
transfer interesting effects from the universe of random dynamical systems to the universe
of standard dynamical systems.

In Section 2.4 “Basic example” we will construct one particular example of a random
dynamical system that has a bony attractor. In the next sections (“Open set of step skew
products”, “Smooth example”, “Mild skew products” and “Open set of smooth examples”)
we will follow the Gorodetski--Ilyashenko strategy. As a result, in the “Open set of smooth
examples” we will prove the main theorem of this chapter, i. e. we will prove that there
exists a non-empty open set of maps 𝐹∶ 𝕋3 → 𝕋3 such that each map from this set has a
bony attractor.

In the last section of this chapter we will discuss some possible directions of further
research (open problems, new constructions etc.).

2.1 Preliminaries

In this section we will give accurate definitions for the concepts used in this chapter,
and introduce some useful notation.
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2.1.1 Stability

The following notions were introduced by Lyapunov in his work [17] (see also English
version [18]).

Definition 2.1.1 Let 𝐹 be a continuous mapping of a metric space 𝑋 into itself. A fixed
point 𝑥 ∈ 𝑋, 𝐹𝑥 = 𝑥 is called Lyapunov stable if for arbitrarily small neighborhood 𝑈 of
𝑥 there exists a smaller neighborhood 𝑉 ∋ 𝑥 such that any trajectory starting with a point
of 𝑉 never leaves 𝑈. In other words,

∀ > 0∃𝛿 > 0∀𝑦 ∈ 𝐵(𝑥, )∀𝑛 > 0 𝑑(𝑥, 𝐹𝑛𝑦) < .

Consider the maps sketched in Figure 2.2. The north--south map has two fixed points, 𝑁
and 𝑆. The north pole 𝑁 is unstable, and the south pole 𝑆 is stable. The maps sketched
in Figures 2.2 (b)--(f) have a single fixed point (0, 0). This point is Lyapunov stable for
the maps from Figures 2.2 (b) and (c) and is Lyapunov unstable for the maps from Fig-
ures 2.2 (d)--(f).

There is a big difference between a center (see Figure 2.2 (b)) and a stable focus (see
Figure 2.2 (c)). In the latter case the orbits not just stay in some small neighborhood of
the fixed point, but also tend to the fixed point as time tends to infinity. This motivates the
following definition.

Definition 2.1.2 A Lyapunov stable fixed point 𝑥 is called asymptotically stable if there
exists > 0 such that for any 𝑦 ∈ 𝐵(𝑥, ) the sequence 𝐹𝑛(𝑦) tends to 𝑥 as 𝑛 → +∞.

Note that the condition of Lyapunov stability cannot be omitted. Indeed, consider the
map sketched in Figure 2.2 (f). One can extend this map to the sphere ℂ̄ = 𝑆2. Any
trajectory of the extended map tends to the origin as time tends to infinity, but the origin
is not Lyapunov stable.

We will need to speak about stable and unstable invariant subsets that contain more
than one point. Recall the definition.

Definition 2.1.3 Let 𝐹 be a continuous mapping of a metric space 𝑋 into itself. An
invariant subset 𝐴 ⊂ 𝑋 (i. e. a subset such that 𝐹(𝐴) = 𝐴) is said to be Lyapunov stable
if for any > 0 there exists 𝛿 > 0 such that any orbit that starts with a point from the
𝛿-neighborhood of 𝐴 does not leave the -neighborhood of 𝐴. In other words,

∀ > 0∃𝛿 > 0∀𝑦 ∈ 𝑋∀𝑛 ∈ ℕ (𝑑(𝐴, 𝑦) < 𝛿 ⇒ 𝑑(𝐴, 𝐹𝑛𝑦) < ) .
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𝑁

𝑆

(a) north--south map
𝜑 ↦ 𝜑 − 0.1 cos 𝜑

(b) Rotation
(𝑟, 𝜑) ↦ (𝑟, 𝜑 + 𝛼)

(c) Stable focus
(𝑟, 𝜑) ↦ (𝑘𝑟, 𝜑 + 𝛼), 𝑘 < 1

(d) Unstable focus
(𝑟, 𝜑) ↦ (𝑘𝑟, 𝜑 + 𝛼), 𝑘 > 1

(e) Linear saddle point,
(𝑥, 𝑦) ↦ (𝑎𝑥, 𝑦/𝑎)

(f) Time one map
for �̇� = 𝑧2 on the
Riemann sphere

Figure 2.2 Examples of stable and unstable fixed points
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2.1.2 Attractors

Let 𝐹 be a dynamical system with discrete time, i. e. a map of a complete metric space
𝑋 into itself, 𝐹∶ 𝑋 → 𝑋. Informally, an attractor of the map 𝐹 is a closed set 𝐴 ⊂ 𝑋
that attracts sufficiently many orbits of the map 𝐹 such that any smaller closed set 𝐴′ ⊂ 𝐴
attracts much less orbits of the map 𝐹. There are several formalizations of this concept.
Let us formulate some of them.

2.1.2.1 Maximal attractor

First recall that a domain 𝑈 ⊂ 𝑋 is called an absorbing domain of the mapping 𝐹 if
𝐹(𝑈) ⋐ 𝑈, i. e. 𝑈 includes the closure of the image 𝐹(𝑈), and this closure is a compact
set.

Definition 2.1.4 Let 𝐹 be a mapping of a complete metric space 𝑋 into itself. Let 𝑈 be
an absorbing domain of 𝐹. The maximal attractor of the restriction 𝐹|𝑈 is the intersection
of all the images of the domain 𝑈 under the iterations4 of 𝐹:

𝐴𝑚𝑎𝑥(𝐹) = ⋂
𝑛⩾0

𝐹𝑛(𝑈).

This attractor is calledmaximal because it attracts all points of the absorbing domain 𝑈.
Note that the notion of the maximal attractor depends on an absorbing domain 𝑈 ⊂ 𝑋.

For instance, consider the mapping given in polar coordinates by the formula

(𝑟, 𝜑) ↦ (2𝑟 − 𝑟2, 𝜑 − 0.1 cos 𝜑). (2.1)

The restriction of this map to the unit circle is the north--south map sketched in Fig-
ure 2.2 (a). Some possible absorbing domains and the corresponding maximal attractors
are listed in the table below.

Absorbing domain Maximal attractor
Disk {(𝑥, 𝑦) | 𝑟 < 2} Disk {(𝑥, 𝑦) | 𝑟 ⩽ 1}
Ring {(𝑥, 𝑦) | 0.5 < 𝑟 < 1.5} Circle {(𝑥, 𝑦) | 𝑟 = 1}

Disk 𝐵1(𝑆) = {(𝑥, 𝑦) |
| 𝑥

2 + (𝑦 + 1)2 < 1} South pole {𝑆}

Table 2.1 Absorbing domains and the corresponding maximal at-
tractors for the north-south mapping (2.1)

4 In the sequel, if 𝑔 is a map, then 𝑔𝑘 stands for the 𝑘-th iterate of 𝑔.
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How one can decide which of these maximal attractors is better? We will provide one
of the possible answers in the next subsubsection.

2.1.2.2 Milnor likely limit set

Imagine that we use a numerical experiment to investigate the limit behaviour of sys-
tem (2.1). We choose random point, calculate its images under many iterations of the
mapping 𝐹, draw high-resolution black pixels at these images and look at the black set.
For the north-south mapping (2.1), the images of any point tend to the south pole — ex-
cluding the case when this point is located exactly at the ray 𝜑 = 𝜋/2. But this event has
probability zero, so it cannot happen in a real experiment. Hence, we will see only the
black domain near the south pole.

Thus it would be natural to modify the definition of an attractor so that the circle 𝑟 = 1
will not be an attractor anymore. John Milnor [19] suggested such definition. First, we
recall the notion of the 𝜔-limit set.

Definition 2.1.5 Let 𝐹 be a map of a metric space 𝑋 into itself. The set 𝜔(𝑥) of limit
points of the sequence 𝐹𝑛(𝑥), 𝑛 > 0, is called 𝜔-limit set of the point 𝑥 ∈ 𝑋.

Definition 2.1.6 Let 𝑋 be a metric space with measure. A closed subset 𝐴 ⊂ 𝑋 is called
a Milnor attractor if it satisfies two conditions:

• the realm of attraction of 𝐴, consisting of all points 𝑥 ∈ 𝑋 for which 𝜔(𝑥) ⊂ 𝐴, must
have strictly positive measure; and

• there is no strictly smaller closed set 𝐴′ ⊂ 𝐴 so that the realm of attraction of 𝐴′

coincides with the realm of attraction of 𝐴 up to a set of measure zero.

Though a map 𝐹∶ 𝑋 → 𝑋 can have many attractors in the sense of this definition, it
has the unique attractor that contains all other attractors.

Definition 2.1.7 The likely limit set 𝐴𝑀(𝐹) is the smallest closed subset of 𝑋 with the
property that 𝜔(𝑥) ⊂ 𝐴𝑀(𝐹) for every point 𝑥 ∈ 𝑋 outside of a set of measure zero.

Lemma 2.1.8 (Milnor, [19, p. 4]) This likely limit set 𝐴𝑀 is well defined and is a Milnor
attractor for 𝐹. In fact, 𝐴𝑀 is the unique maximal Milnor attractor, which contains all
others.

We will give two other equivalent definitions of the likely limit set.

Definition 2.1.9 Let 𝑋 be a complete metric space with measure 𝜇, 𝐹∶ 𝑋 → 𝑋 be
continuous map that preserves the class of the measure 𝜇. The likely limit set of the map
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𝐹 is the smallest closed subset 𝐴𝑀 ⊂ 𝑋, such that for 𝜇-almost every point 𝑥 ∈ 𝑋 the
distance 𝑑(𝐴𝑀, 𝐹𝑛(𝑥)) tends to zero as 𝑛 tends to +∞.

Definition 2.1.10 Let 𝑋 be a complete metric space with measure 𝜇, 𝐹∶ 𝑋 → 𝑋 be
continuous map that preserves the class of the measure 𝜇. We will say that a point 𝑥 ∈ 𝑋
belongs to the likely limit set of the map 𝐹 if for any neighborhood 𝑈 ∋ 𝑥 the set of points
𝑦 such that 𝐹𝑛𝑦 ∈ 𝑈 for infinitely many natural numbers 𝑛 has a positive measure.

2.1.3 Bernoulli and Markov shifts

In this subsection we will introduce the notions of Bernoulli and Markov shifts. The
phase space of a Bernoulli (Markov) shift is (a subset of) the space Σ𝑘 of bi-infinite se-
quences of numbers 0, …, 𝑘 − 1, and both maps are left shifts (𝜎𝜔)𝑖 = 𝜔𝑖+1. The main
difference between these two notions is the measure we choose on Σ𝑘.

In the case of Bernoulli shift, 𝜔𝑖 are independent and identically distributed random
variables. Formally, we take a tuple of probabilities 𝑝0, …, 𝑝𝑘−1 such that ∑ 𝑝𝑖 = 1. Then
we define the measure on the cylinders

𝐶𝑏
𝑎(𝑣) := {𝜔 || 𝜔𝑎 = 𝑣𝑎, …, 𝜔𝑏 = 𝑣𝑏}

by the formula

𝜇(𝐶𝑏
𝑎(𝑣)) := 𝑝𝑣𝑎

⋅ … ⋅ 𝑝𝑣𝑏
,

and extend the measure to the sigma-algebra generated by these cylinders.
We also equip this space with “(𝜆−, 𝜆+)-adic” metric

𝑑(𝜔, �̃�) = max(𝜆−𝑛−(𝜔,�̃�)
− , 𝜆−𝑛+(𝜔,�̃�)

+ ), (2.2)

where 𝑛−(𝜔, �̃�) (resp., 𝑛+(𝜔, �̃�)) is the least integer non-negative number 𝑛 such that
𝜔−𝑛 ≠ �̃�−𝑛 (resp., 𝜔𝑛 ≠ �̃�𝑛). We will often consider (𝑘, 𝑘)-adic metric.

Definition 2.1.11 The Bernoulli shift is the left shift on the space Σ𝑘,

𝜎∶ Σ𝑘 → Σ𝑘, (𝜎𝜔)𝑗 = 𝜔𝑗+1.

In the case of Markov shift, we equip the space Σ𝑘 with the measure corresponding to
a time-homogeneous Markov chain. In other words,
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• 𝜔𝑛 are identically distributed random variables, 𝑃(𝜔𝑛 = 𝑖) = 𝑝𝑖;
• 𝜔𝑛+1 depends only on 𝜔𝑛;
• the probabilities 𝐴𝑖𝑗 = 𝑃(𝜔𝑛+1 = 𝑗 | 𝜔𝑛 = 𝑖) are independent on 𝑛.

Formally, take a 𝑘 × 𝑘 matrix 𝐴 and a tuple of numbers 𝑝𝑖 satisfying the following
conditions.

• Each transition probability is non-negative, 𝐴𝑖𝑗 ⩾ 0.
• Each probability 𝑝𝑖 is postive, 𝑝𝑖 > 0.
• For any symbol 𝑖, the total probability to pass from this symbol to another one equals

one,
𝑘−1

∑
𝑗=0

𝐴𝑖𝑗 = 1.

• The sum of probabilities 𝑝𝑖 equals one,

𝑘−1

∑
𝑖=0

𝑝𝑖 = 1.

• The probability that a given symbol 𝑗 appears at a given position can be computed as
the sum of probabilities of transitions to this symbol from the symbol located in the
previous position,

𝑘−1

∑
𝑖=0

𝑝𝑖𝐴𝑖𝑗 = 𝑝𝑗.

In other words, 𝑝𝑖 is a left eigenvector of the matrix 𝐴 with eigenvalue 1.

Let the measure of a cylinder 𝐶𝑏
𝑎(𝑣) be given by

𝜇𝐴(𝐶𝑏
𝑎(𝑣)) = 𝑝𝑣𝑎

𝐴𝑣𝑎𝑣𝑎+1
…𝐴𝑣𝑏−1𝑣𝑏

.

Due to the properties of the matrix 𝐴 and the tuple 𝑝 the measure 𝜇𝐴 can be extended
to the sigma-algebra generated by the cylinders 𝐶𝑏

𝑎(𝑣).
Given a 𝑘 × 𝑘 matrix 𝐴, consider the corresponding directed graph, i. e. the graph on

vertices 0, …, 𝑘 − 1 such that a vertex 𝑖 is connected to a vertex 𝑗 if and only if 𝐴𝑖𝑗 ≠ 0.
Recall that a square matrix 𝐴 is called irreducible if the corresponding graph is strongly
connected, i. e. for any two vertices 𝑖 and 𝑗 there exists a directed path from 𝑖 to 𝑗. A square
matrix 𝐴 is called aperiodic if the greatest common divisor of the lengths of the directed
cycles in the corresponding directed graph equals one.
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Perron--Frobenius Theorem states that for any irreducible aperiodic matrix 𝐴 such that
∑𝑘−1

𝑗=0 𝐴𝑖𝑗 = 1 the following holds.

• There exists a unique left eigenvector 𝑝𝑖 of the matrix 𝐴.
• The eigenvalue 1 is simple, and all other eigenvalues of 𝐴 have absolute values less

than one.

The first part implies that an irreducible aperiodicmatrix𝐴 determines a uniqueMarkov
chain.

Consider the subset Σ𝑘
𝐴 ⊂ Σ𝑘 consisting of the admissible sequences, i. e. the se-

quences 𝜔 such that all the probabilities 𝐴𝜔𝑛𝜔𝑛+1
are positive,

Σ𝑘
𝐴 = {𝜔 ∈ Σ𝑘 |

| ∀𝑛 ∈ ℤ : 𝐴𝜔𝑛𝜔𝑛+1
≠ 0}. (2.3)

Obviously, Σ𝑘
𝐴 is a compact subset of Σ𝑘, and 𝜇𝐴Σ𝑘

𝐴 = 𝜇𝐴Σ𝑘 = 1.

Definition 2.1.12 Let a (𝑘 × 𝑘)-matrix 𝐴 and a 𝑘-tuple of numbers 𝑝 satisfy the con-
ditions listed above. The Markov shift is the restriction of the left shift to the space Σ𝑘

𝐴
equipped with Markov measure 𝜇𝐴 and some (𝜆−, 𝜆+)-adic metric.

Clearly, a Bernoulli shift is a Markov shift, but not vice versa.

2.1.4 Skew products

2.1.4.1 The notion of a skew product

Recall that the Cartesian product of two maps ℎ∶ 𝐵 → 𝐵 and 𝑓∶ 𝑀 → 𝑀 is the map
(ℎ×𝑓)∶ 𝐵×𝑀 → 𝐵×𝑀, (𝑏, 𝑚) ↦ (ℎ(𝑏), 𝑓(𝑚)). In other words, a map 𝐹∶ 𝐵×𝑀 → 𝐵×𝑀
is a Cartesian product if it preserves the structure of the Cartesian product 𝐵 × 𝑀.

The first example of a system having a bony attractor will not be a Cartesian product but
it will belong to a larger class of skew products. We will give three equivalent definitions
of a skew product.

Definition 2.1.13 Let ℎ∶ 𝐵 → 𝐵 be a continuous map of metric space 𝐵 into itself, 𝑀
be a metric space. A continuous map 𝐹∶ 𝐵 × 𝑀 → 𝐵 × 𝑀 is called a skew product over
the map ℎ with fiber 𝑀 if it has the following form,

𝐹∶ 𝐵 × 𝑀 → 𝐵 × 𝑀, 𝐹∶ (𝑏, 𝑥) ↦ (ℎ(𝑏), 𝑓𝑏(𝑥)).

The maps 𝑓𝑏 are called fiber maps of the skew product 𝐹.
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Definition 2.1.14 A continuous map 𝐹∶ 𝐵 × 𝑀 → 𝐵 × 𝑀 is a skew product over a map
ℎ∶ 𝐵 → 𝐵 if the following diagram commutes,

𝐵 × 𝑀 𝐵 × 𝑀

𝐵 𝐵

𝐹

𝜋𝐵 𝜋𝐵

ℎ

Here 𝜋𝐵∶ 𝐵 × 𝑀 → 𝐵 is the projection (𝑏, 𝑚) ↦ 𝑏.

Definition 2.1.15 A continuous map 𝐹∶ 𝐵 × 𝑀 → 𝐵 × 𝑀 is called a skew product if it
preserves the vertical fibration {𝑏} × 𝑀.

2.1.4.2 The examples of skew products

The class of skew products plays important role in the dynamical systems theory. Many
types of the limit behaviour of a dynamical system were first observed for skew products.

Example 2.1.16 Clearly, any Cartesian product of two maps is a skew product.

Figure 2.3 Solenoidmap5

for 𝑘 = 2

Example 2.1.17 (Solenoidmap)Another well-known skew
product is the Smale—Williams solenoid mapping of the
solid torus

𝑆1 × 𝐷2 = {(𝑧, 𝑤) | |𝑧| = 1, |𝑤| ⩽ 1}

into itself defined by the formula

𝑠∶ (𝑧, 𝑤) ↦ (𝑧𝑘, 0.5𝑧 + 𝑤), (2.4)

where is a small positive constant. We will discuss some
properties of this map in Subsubsection 2.3.2.2.

Example 2.1.18 (Hairy attractor) Consider the map 𝐹∶ 𝑆1 × ℝ → 𝑆1 × ℝ given by

𝐹∶ (𝑦, 𝑥) ↦ (2𝑦, ℎ(𝑦)𝑥), ℎ(𝑦) = 1 + 0.5 cos 2𝜋𝑦.

5 © Ilya Schurov, the work is in public domain. The picture was drawn using gnuplot and pov-ray. The sources
available at http://en.wikipedia.org/wiki/File:Smale-Williams_Solenoid.png
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Clearly, this map is a skew product over the map 𝑦 ↦ 2𝑦. One can show that 𝐹 cannot be
conjugated to a Cartesian product. We will neither prove nor use this fact.
Consider the compactification𝐹∶ 𝑆1×ℝℙ1 → 𝑆1×ℝℙ1 of themap𝐹. Since∫𝑆1 log ℎ(𝑦) 𝑑𝑦<
0, Birkhoff--Khinchin Theorem implies that almost any point of the phase space tends to
the circle 𝑆1 × {0}, thus this circle includes the likely limit set of 𝐹. One can show that
actually the likely limit set coincides with the circle 𝑆1 × {0}.
On the other hand, there exists an uncountable set of fibers {pt} × ℝℙ1 (the ‘hair') such
that their points tend to the circle 𝑆1 × {∞}. Therefore the likely limit set of the map 𝐹 is
not Lyapunov stable.

Example 2.1.19 (Intermingled basins) Consider the space of boundary-preserving skew
products over the angle-doubling map of the circle,

𝐹∶ 𝑆1 × [0, 1] → 𝑆1 × [0, 1], (𝑦, 𝑥) ↦ (2𝑦, 𝑓𝑦(𝑥)), 𝑓𝑦(0) = 0, 𝑓𝑦(1) = 1.

Itai Kan [14] found a non-empty open set in this space such that any system from this set
has two attractors, 𝑆1×{0} and 𝑆1×{1}, and their realms of attraction are highly intermin-
gled: the closure of each realm of attraction is the whole phase space. Near each attractor
the Itai Kan example looks like an example of a hairy attractor, i. e. ∫𝑆1 log 𝑓′

𝑦(𝑖) 𝑑𝑦 < 0
for 𝑖 = 0, 1.
Later Yu. Ilyashenko, V. Kleptsyn, P. Saltykov [9 and 15] and independently C. Bonatti, L.
Díaz andM. Viana [2] have shown that these properties survive under a small perturbation
in the class of 𝐶2 smooth boundary-preserving maps of the cylinder.

2.1.4.3 Step and mild skew products over a left shift

Though studying the skew products is easier than studying a map without any known
structure, sometimes it is convenient to start with even smaller class of step skew products
over a Markov (Bernoulli) shift.

Definition 2.1.20 A skew product 𝐹 over a Markov shift 𝜎𝐴∶ Σ𝑘
𝐴 → Σ𝑘

𝐴 is called a step
skew product if the fiber maps 𝑓𝜔 depend only on the current symbol 𝜔0 of the sequence 𝜔,

𝐹∶ Σ𝑘
𝐴 × 𝑀 → Σ𝑘

𝐴 × 𝑀, (𝜔, 𝑥) ↦ (𝜎𝜔, 𝑓𝜔0
(𝑥)), 𝑓𝑖∶ 𝑀 → 𝑀.

The class of step skew products can be used as a playground to find new interesting
types of the limit behaviour of dynamical systems.

A step skew product over a Bernoulli shift can be considered as a random dynamical
system on 𝑀: every time we randomly choose which of the maps 𝑓𝑖 should be applied at
the moment.
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General skew products over a Markov shift are called mild skew products. We will use
this term to underline that a skew product is not required to be a step skew product.

2.1.5 Hausdorff dimension

Definition 2.1.21 Let 𝑋 be a metric space. Consider an open covering 𝑈 of the space
𝑋, i. e. finite or countable family of open balls 𝑄𝑗 of radii 𝑟𝑗 such that the union of the
balls 𝑄𝑗 coincides with the space 𝑋. Define 𝑑-dimensional volume 𝑉𝑑(𝑈) of the covering
𝑈 by the formula

𝑉𝑑(𝑈) = ∑
𝑗

𝑟𝑑
𝑗 .

The Hausdorff dimension of the space 𝑋 is the infimum of the set of numbers 𝑑 such that
there exists an open covering of the space 𝑋 of arbitrarily small 𝑑-dimensional volume,

dim𝐻 𝑋 = inf{𝑑 || ∀ > 0∃ a covering 𝑈 of the metric space 𝑋 such that 𝑉𝑑(𝑈) < }.

Recall that the Hausdorff dimension of a compact 𝑑-dimensional manifold 𝑀 equals 𝑑.
The same holds for a subset 𝐴 ⊂ 𝑀 of positive Lebesgue measure. Probably the most
famous example of a metric space having a non-integer Hausdorff dimension is the Cantor
set,

dim𝐻{𝑥 ∈ [0, 1]
|
|
|
∀𝑛 ∈ ℕ {3𝑛𝑥} ∈ [0, 1

3] ∪ [
2
3

, 1]} = log3 2.

The following lemma estimates the distortion of theHausdorff dimension of a set under
a Hölder continuous mapping.

Lemma 2.1.22 (Falconer, [4]) Let 𝑍 be a Riemannian manifold, 𝐴 be some subset of
𝑍. Let 𝜑∶ 𝑍 → 𝑍 be a Hölder continuous map with Hölder exponent 𝛼. Then

dim𝐻 𝜑(𝐴) <
dim𝐻 𝐴

𝛼
. (2.5)

In particular, the inequality dim𝐻 𝐴 < 𝛼 dim 𝑍 implies that 𝜇(𝜑(𝐴)) = 0. Indeed,
if the former inequality holds, then due to Falconer Lemma dim𝐻 𝜑(𝐴) < dim 𝑍, hence
𝜇(𝜑(𝐴)) = 0.

Note that the condition 𝜇(𝐴) = 0 does not imply that 𝜇(𝜑(𝐴)) = 0. For example, the
image of the standard Cantor set under the Cantor function is the interval.
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2.2 Definition of a bony attractor

Informally, a bony attractor consists of two parts: the graph of a continuous function,
and rather large family of vertical segments (bones).

Definition 2.2.1 Let 𝑋 be a compact manifold with or without boundary. We will say
that a continuousmap 𝐺∶ 𝑋 → 𝑋 has a bony attractor if there exists a 𝐺-invariant fibration
with smooth compact one-dimensional fibers such that the following holds.

1. Each fiber of the invariant fibration either does not intersect the likely limit set 𝐴𝑀 (see
Definition 2.1.9), or intersects 𝐴𝑀 on a single point, or intersects 𝐴𝑀 on a topological
segment (a bone).

2. The union of the bones is dense in the likely limit set, and the set of bones has the
cardinality of ℝ.

3. Let 𝑌 ⊂ 𝑋 be the saturation of the likely limit set by the fibers. Then the Hausdorff
dimension dim𝐻 𝐴𝑀 of the likely limit set is less than the Hausdorff dimension of 𝑌,

dim𝐻 𝐴𝑀 < dim𝐻 𝑌. (2.6)

We will say that the graph part Γ of the attractor is the relative complement of the union
of the bones in the likely limit set.

The second condition means that the set of bones is rather large. The last condition
means that the set of bones is not very large.

Definition 2.2.2 We will say that a continuous map 𝐺∶ 𝑋 → 𝑋 has a bony attractor
without holes if it has a bony attractor, and two additional conditions hold.

1. The graph part Γ is dense in the likely limit set, Cl Γ = 𝐴𝑀.
2. The likely limit set is asymptotically stable.

The aim of this chapter is to prove the following result.

Theorem 2.2.3 There exists a non-empty open set in the space of 𝐶2-diffeomorphisms
of the three-torus such that each map from this set has a bony attractor without holes.

In fact, the domain 𝑈 = 𝕋2 × [0, 1] ⊂ 𝕋2 × 𝑆1 is an absorbing domain, see Subsec-
tion 2.1.2, for all the maps from this open set, and we will first prove the conditions of
Definition 2.2.1 and the first condition of Definition 2.2.2 for the maximal attractor in this
domain instead of the likely limit set. Then, we will prove that the maximal attractor for
this domain coincides with the likely limit set.
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The proof will follow the general strategy due to Yu. Ilyashenko and A. Gorodetski. In
the next section we will describe the Gorodetski--Ilyashenko strategy, then we will follow
this strategy.

2.3 General strategy: from random systems to diffeomorphisms

Though it is interesting to find a single example of a dynamical system with unusual
behaviour, it is much more interesting to find a non-empty open set of dynamical systems
with such behaviour.

One can simplify the task of constructing the examples of exotic behaviour by replacing
the classical dynamical system (i. e. the action of the cyclic group ℤ) by an action of a
free finitely generated semigroup. Indeed, given a manifold, we have much more freedom
with actions of the free semigroup than with actions of the cyclic group, hence we can
construct interesting examples with less effort.

A. Gorodetski and Yu. Ilyashenko [6] found a very strong relation between the dynam-
ics generated by a generic action of a free semigroup on a compact manifold, on the one
hand, and a generic classical dynamical system, on the other hand. This relation leads to
the following heuristic principle formulated in the same article: all phenomena observed
generically in the dynamics of a free semigroup can be also found among generic diffeo-
morphisms6.

The Gorodetski–Ilyashenko strategy was used in, e.g., [8, 9, 11, 12, 15 and 22].
In Subsections 2.3.1–2.3.3 we will describe the Gorodetski–Ilyashenko strategy, step

by step, and discuss some difficulties that one has to overcome on this path. In Subsec-
tion 2.3.5 we will briefly list the main steps of the strategy.

2.3.1 Step skew products

Given a free semigroup ℱ generated by 𝑘 smooth maps of a compact manifold 𝑀 into
itself, 𝑓𝑖∶ 𝑀 → 𝑀, 𝑖 = 0, …, 𝑘 − 1, one can consider the step skew product 𝐹 over the
Bernoulli shift (see Subsubsection 2.1.4.3) generated by 𝑓𝑖. It is easy to see that the orbits
of the semigroup ℱ coincide with the projections of the positive semitrajectories of the
map 𝐹 onto the fiber along the base. Therefore, one can reformulate the properties of the
action of ℱ in terms of the step skew product 𝐹.

We will skip this first step, and start with studying step skew products. In Section 2.4
we will construct a single step skew product having a bony attractor, then in Section 2.5
we will show that all the required properties survive under a small perturbation in the class
of step skew products.

6 More precisely, generic in some non-empty open set of diffeomorphisms.
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2.3.2 Smooth realization

One can say that Σ𝑘 ×𝑀 is not a manifold, so there is nothing surprising in the fact that
a dynamical system on Σ𝑘 ×𝑀 can have an unusual asymptotic behaviour. This subsection
deals with different ways to find a smooth realization of the map 𝐹. First of all, we need
a smooth realization of the Bernoulli shift. There are two well-known maps that have a
maximal hyperbolic set Λ such that the restriction of the map to Λ is (semi-)conjugated to
a Bernoulli shift, and one well-known map semi-conjugated to a Markov shift. To obtain
a smooth realization of the skew product, one should replace the shift 𝜎 by one of these
maps. Now we will describe these maps.

2.3.2.1 Smale's horseshoe

This is the simplest smooth realization of the Bernoulli shift. Take 𝑘 “horizontal”
rectangles 𝐷𝑖 and 𝑘 “vertical” rectangles 𝐷′

𝑖,

𝐷𝑖 = [0, 1] × [
2𝑖 − 1
2𝑘 + 1

, 2𝑖
2𝑘 + 1] ; 𝐷′

𝑖 = [
2𝑖 − 1
2𝑘 + 1

, 2𝑖
2𝑘 + 1] × [0, 1].

The Smale's horseshoe map ℎ maps each “horizontal” rectangle 𝐷𝑖 onto the corre-
sponding “vertical” rectangle 𝐷′

𝑖 shrinking in the horizontal direction and expanding in
the vertical direction,

ℎ|𝐷𝑖
(𝑥, 𝑦) = (

2𝑖 + 𝑥 − 1
2𝑘 + 1

, (2𝑘 + 1)𝑦 − (2𝑖 − 1)) .

One can easily extend this map to a homeomorphism of the two-dimensional sphere.
The map ℎ (and, hence, its extension) has the hyperbolic invariant set Λ such that the
restriction ℎ|Λ is conjugated to the Bernoulli shift 𝜎∶ Σ𝑘 → Σ𝑘. The set Λ consists of the
points (𝑥, 𝑦) such that both 𝑥 and 𝑦 have only odd digits in base 2𝑘 + 1 representation.

One can easily obtain a smooth realization of a given step skew product using Smale's
horseshoe. It is sufficient to take any skew product 𝐺 over ℎ such that 𝑔𝑏 = 𝑓𝑖 for 𝑏 ∈ 𝐷𝑖.
Then the restriction 𝐺|Λ×𝑀 will be conjugated to the original step skew product 𝐹.

The main drawback of this realization is that the set Λ is not Lyapunov stable for ℎ,
hence the set Λ × 𝑀 is not Lyapunov stable for 𝐺.

2.3.2.2 Solenoid map
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Figure 2.4 Solenoidmap7

for 𝑘 = 2.

Recall (see Subsubsection 2.1.4.2) that the Smale–Williams
mapping of the solid torus

𝑆1 × 𝐷2 = {(𝑧, 𝑤) | |𝑧| = 1, |𝑤| ⩽ 1}

into itself is given by the formula

𝑠∶ (𝑧, 𝑤) ↦ (𝑧𝑘, 0.5𝑧 + 𝑤), (2.7)

where is a small positive constant.
The image of the solid torus under the map 𝑠 is homeo-

morphic to another solid torus, wrapped 𝑘 times inside the initial one (see Figure 2.4 for
𝑘 = 2). Now it is easy to see that the maximal attractor of 𝑠 intersects each disk {𝑧} × 𝐷2

on a Cantor set.
The restriction of 𝑠 to its maximal attractor Λ is a quotient map of the Bernoulli shift

𝜎∶ Σ𝑘 → Σ𝑘, i. e. there exists a continuous map Φ∶ Σ𝑘 → Λ such that the following
diagram commutes.

Σ𝑘 Σ𝑘

Λ Λ

𝜎

Φ Φ
𝑠

The conjugation Φ is called the fate map. Split the circle |𝑧| = 1 into 𝑘 equal arcs 𝑑𝑖,
and split the initial solid torus into 𝑘 parts

𝐴𝑖 = 𝑑𝑖 × 𝐷2, 𝑑𝑖 = {𝑧 ∈ 𝑆1 |
| 𝑖 ⩽ 𝑘 arg 𝑧 < 𝑖 + 1}

For any sequence 𝜔 ∈ Σ𝑘, its image Φ(𝜔) is the only point 𝑥 of the solid torus such
that for any integer number 𝑗 the point 𝑠𝑗(𝑥) belongs to the closure of 𝐴𝜔𝑗

. Let Σ𝑘
0 ⊂ Σ𝑘

be the set of sequences 𝜔 ∈ Σ𝑘 such that 𝜔 has no right tail of symbols ‘𝑘 − 1'. Then
the fate map Φ is continuous on Σ𝑘 and the restriction of the fate map to the set Σ𝑘

0 is a
bijective map. Moreover, the forward image of the standard Bernoulli measure on Σ𝑘 is
the SRB-measure on Λ.

The solenoid Λ is the maximal attractor of the mapping 𝑠. Hence, unlike the Smale
horseshoe, the set Λ × 𝑀 is Lyapunov stable for 𝐺. It makes the example obtained by this
realization more interesting.

7 © Ilya Schurov, the work is in public domain. The picture was drawn using gnuplot and pov-ray. The sources
available at http://en.wikipedia.org/wiki/File:Smale-Williams_Solenoid.png
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However, in this case we cannot just take 𝑔𝑏(𝑥) = 𝑓𝑖 for 𝑏 ∈ 𝐴𝑖 because the skew
product 𝐺 defined in this way will not be continuous.

One of the ways to overcome this difficulty is to take 𝑔𝑏(𝑥) = 𝑓𝑖 for 𝑏 ∈ 𝐴𝑖 ∖ (𝑑′
𝑖 × 𝐷2),

where 𝑑′
𝑖 are small arcs near the ends of 𝑑𝑖, and glue them into a continuous skew product

𝐺 using the fiber maps over the points 𝑏 ∈ 𝑑′
𝑖 × 𝐷2. In this case one should somehow

avoid the points from 𝑑′
𝑖 × 𝐷2 in the proofs. It seems to be easy, but actually sometimes

one needs to avoid the points whose trajectories intersect 𝑑′
𝑖 × 𝐷2 as well, and the set of

such points has full measure.
The other way to overcome this difficulty is to take the solenoid map that wraps the

solid torus 2𝑘 times. In this case we can take 𝑔𝑏(𝑥) = 𝑓𝑖 for 𝑏 ∈ 𝐴2𝑖, and extend 𝐺 to a
smooth skew product. It seems that in this case one has to avoid more sequences (about
half of the phase space), but the projection of the image of each part 𝐴2𝑖 under the solenoid
map onto 𝑧 is the whole circle, 𝜋𝑧 ∘ 𝑠(𝐴2𝑖) = 𝑆1.

Actually, there are two other small technical difficulties with this smooth realization.
First, the Bernoulli shift is not conjugated to the solenoid map, but semi-conjugated. Sec-
ond, the solenoid map contracts in the stable direction stronger than it extends in the un-
stable direction. Therefore, if we want the fate map to be Lipschitz, we have to equip Σ𝑘

with (𝜆−, 𝜆+)-adic metric, 𝜆− ≠ 𝜆+ (see Subsection 2.1.3). Both of these problems just
add some technical details to the proofs.

2.3.2.3 Anosov diffeomorphism

We will not discuss now the general concept of Anosov diffeomorphism. Instead, we
will define a linear Anosov diffeomorphism of the two-torus 𝕋2 = ℝ2/ℤ2. Let 𝐴 be an
integer area-preserving 2 × 2 matrix, 𝐴 ∈ 𝑆𝐿2(ℤ). Then the action of the matrix 𝐴 on the
plane ℝ2 descends to a diffeomorphism of the two-torus 𝕋2. We will use the same letter
𝐴 for this diffeomorphism.

Definition 2.3.1 The action of an integer area-preserving 2 × 2 matrix 𝐴 ∈ 𝑆𝐿2(ℤ) on
the two-torus is called a linear Anosov diffeomorphism if 𝐴 has two distinct real eigenval-
ues.

It turns out that this Anosov diffeomorphism is a quotient map of a Markov shift on
the space Σ𝑘

𝐵 ⊂ Σ𝑘 of admissible words (see (2.3)). To prove this statement, one should
construct a Markov partition of the torus into parallelograms 𝐴𝑖, and consider the corre-
sponding fate map.

This smooth realization of the left shift is in some sense the best one, but needs even
more technical work than the previous one. The main advantage of this realization over
the horseshoe map and the solenoid map is that the maximal hyperbolic set Λ coincides
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with the whole phase space. Usually this allows us to construct a diffeomorphism having
the same properties as the initial step skew product.

The main new difficulty with this smooth realization is that linear Anosov diffeomor-
phism is a quotient map of a Markov shift, not a Bernoulli shift. This means that the
symbols 𝜔𝑖 are not independent anymore. For details see Subsection 2.1.3.

2.3.3 Perturbations

In the previous subsection we have described how one can obtain a single diffeomor-
phism that has the same properties as a given class of skew products over a Markov shift.
In our case ‘has the same properties' will mean ‘has a bony attractor'.

Now it is natural to ask whether the properties of the constructed diffeomorphism
survive under a small perturbation. Before studying the perturbations in the class of all
diffeomorphisms, one should prove that the properties survive under a small perturbation
in the class of skew products over the chosen smooth realization of the left shift 𝜎 (𝜎 can
be either Bernoulli or Markov shift, depending on the chosen smooth realization).

The space of skew products is just a tiny part (e.g., it has infinite codimension) of
the space of all diffeomorphisms. So, a generic perturbation of a skew product is not a
skew product anymore. However, Hirsch, Pugh and Shub [7] proved that if the initial
skew product is partially hyperbolic with vertical central fibers, then a sufficiently small
perturbation of this diffeomorphism is a skew product with respect to another structure of
the trivial fibration. In other words, there exists a coordinate change in the phase space
that conjugates the perturbed diffeomorphism to a skew product close to the original one.

Though every particular fiber of the new fibration is smooth and “almost vertical” in
𝐶𝑟 metric, Hirsch--Pugh--Shub Theorem gives us only continuous dependence of the fibers
on the point in the base. Hence, if we use this theorem to conjugate the perturbed map with
a skew product, we will obtain a skew product whose fiber maps depend continuously on
the point in the base, and the conjugation itself is not smooth. So, the conjugation can map
a set of measure zero to a set of the full measure (this effect is called “Fubini nightmare”).

A. Gorodetski [5] proved that actually the new fibers depend Hölder-continuously on
the point of the base. Later this theorem was generalized by Yu. Ilyashenko and A. Negut
[10]. We recall their theorem in Subsection 2.3.4. In particular, Gorodetski--Ilyashenko--
Negut Theorem states the following. Given a skew product over one of the smooth realiza-
tions described above8, the Hölder exponent tends to 1 as themagnitude of the perturbation
tends to zero.
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This theorem together with the Falconer Lemma (see Lemma 2.1.22 at page 20) allows
us to transfer the statements about Hausdorff dimension from the skew products to the
diffeomorphisms.

2.3.4 Gorodetski--Ilyashenko--Negut Theorem

This subsection follows the Introduction of the article [10].
Let 𝐹 be a skew product over a hyperbolic diffeomorphism ℎ. Suppose that the restric-

tion of 𝑑ℎ to the stable direction contracts all vectors not less than in 𝜆− and not more than
in 𝜆 times, and the restriction of 𝑑ℎ−1 to the unstable direction contracts not less than in
𝜇− and not more than in 𝜇 times,

𝜆−‖𝑣‖ ⩽ ‖𝑑ℎ(𝑣)‖ ⩽ 𝜆‖𝑣‖, for 𝑣 ∈ 𝐸𝑠; (2.8)

𝜇−‖𝑣‖ ⩽ ‖𝑑ℎ−1(𝑣)‖ ⩽ 𝜇‖𝑣‖, for 𝑣 ∈ 𝐸𝑢. (2.9)

Suppose that the stable and unstable fibrations are trivial.

Definition 2.3.2 We will say that a skew product 𝐹 over a hyperbolic diffeomorphism ℎ
satisfies the modified dominated splitting condition, if the following two inequalities hold,

max(𝜆, 𝜇) +
‖
‖
‖‖

𝜕𝑓±1
𝑏

𝜕𝑏

‖
‖
‖‖𝐶0(𝑋)

< max(𝜆−1, 𝜇−1).

‖
‖
‖‖

𝜕𝑓±1
𝑏

𝜕𝑥

‖
‖
‖‖𝐶0(𝑋)

< max(𝜆−1, 𝜇−1)

Theorem 2.3.3 (Ilyashenko--Negut) Let 𝐹 be a skew product over a diffeomorphism ℎ.
Suppose that ℎ has a hyperbolic invariant set Λ. Suppose that the diffeomorphism ℎ sat-
isfies conditions (2.8) and (2.9), and the skew product 𝐹 satisfies the modified dominated
splitting condition. Then for sufficiently small 𝛿>0 and any smooth map 𝐺 which is 𝛿-close
to 𝐹 in 𝐶1 metric the following holds.

• There exists a 𝐺-invariant set 𝑌 ⊂ 𝑋 and a continuous map 𝑝∶ 𝑌 → Λ such that
𝑝 ∘ 𝐺 = ℎ ∘ 𝑝. Moreover, the map

𝐻∶ 𝑌 → Λ × 𝑀, 𝐻(𝑏, 𝑥) = (𝑝(𝑏, 𝑥), 𝑥)

is a homeomorphism.

8 Actually, there are some assumptions on the initial skew product. We will formulate them later.
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• The fibers 𝑊𝑏 = 𝑝−1(𝑏) are Lipschitz close to vertical (constant) fibers, and Hölder
continuous in 𝑏. This means that 𝑊𝑏 is the graph of a Lipschitz map 𝛽𝑏∶ 𝑀 → 𝐵 such
that

𝑑𝐶0(𝛽𝑏, 𝑏) ⩽ 𝑂(𝛿), 𝐿𝑖𝑝𝛽𝑏 ⩽ 𝑂(𝛿),

𝑑𝐶0(𝛽𝑏, 𝛽𝑏′) ⩽ 𝑑(𝑏, 𝑏′)𝛼−𝑂(𝛿)𝑂(𝛿−𝛼),

where

𝛼 = min (
log 𝜆

log 𝜆−
,

log 𝜇
log 𝜇− ) .

Moreover, the map 𝐻−1 is also Hölder continuous, with the same 𝛼.

2.3.5 Short plan of the strategy

This subsection briefly recalls the main steps of the Ilyashenko--Gorodetski strategy.

• Construct an action of the free semigroup having interesting properties such that these
properties survive under a small perturbation.

• Use the explicit construction from Subsection 2.3.1 to obtain a step skew product
with interesting dynamical properties, such that the required properties survive under
a small perturbation in the class of step skew products.

• Use one of the smooth realizations of the Bernoulli shift (see Subsection 2.3.2) to
construct an example of a smooth map that has similar properties. On this step one
has to pass from the space of step skew products to the space of mild skew products.

• Prove that the interesting properties of the system survive under small perturbations in
the space of Hölder skew products with smooth fiber maps. One can assume that the
Hölder exponent is close to 1.

• Use Gorodetski--Ilyashenko--Negut Theorem (see Subsection 2.3.3) to prove that the
properties survive under a small perturbation in the class of smooth maps. On this step
one has to overcome some difficulties related to “Fubini nightmare” effect, and prob-
ably reformulate the required properties for the general case of (partially hyperbolic)
diffeomorphisms.

2.4 Basic example

In this section we will give a single example of step skew product having a bony at-
tractor without holes. In the next subsection we will provide this example and a sketch
of its attractor. Formally, a step skew product cannot have a bony attractor in sense of
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Definition 2.2.1 since the phase space of a step skew product is not a manifold. It turns out
that it is easy to modify the definition of a bony attractor for the class of (step) skew prod-
ucts over any compact metric space with probability measure (see Subsection 2.4.2). In
Subsection 2.4.3 we will introduce some useful notation and conventions. The rest of this
section (Subsections 2.4.4–2.4.7) will be devoted to the proof of the fact that our example
has a bony attractor without holes.

2.4.1 Example

Consider the following three maps (see Figure 2.5),

𝑓0(𝑥) = 0.6𝑥, 𝑓1(𝑥) = 1 − 0.6(1 − 𝑥), 𝑓2(𝑥) = 1
2𝜋

arctan(10𝑥 − 5) + 1
2

. (2.10)

The maps 𝑓0 and 𝑓1 are linear contractions to the endpoints of 𝐼, and the map 𝑓2 has
a repelling fixed point 0.5.

Consider the corresponding step skew product over the Bernoulli shift,

𝐹0∶ Σ3 × 𝐼 → Σ3 × 𝐼, (𝜔, 𝑥) ↦ (𝜎𝜔, 𝑓𝜔0
(𝑥)). (2.11)

We will equip Σ3 with (⅓, ⅓, ⅓) Bernoulli measure and (3, 3)-adic metric.
The graphs of the functions 𝑓𝑖 are drawn in Figure 2.5 (a). The quotient space of

the maximal attractor of 𝐹0 by the space of right tails 𝜔0𝜔1…𝜔𝑛… of sequences 𝜔 ∈
Σ3 is sketched in Figure 2.5 (b). To make the difference between a bony attractor and
a non-bony attractor more clear we have also computed the maximal attractor of the skew
product over 𝜎∶ Σ2 → Σ2 with fiber maps 𝑓0 and 𝑓1, and sketched the quotient space of this
attractor by the space of right tails 𝜔0𝜔1…𝜔𝑛… of sequences 𝜔 ∈ Σ2 (see Figure 2.5 (b)).

𝑓0

𝑓1

𝑓2
𝐼

𝐼

𝐼

Σ3
−

𝐼

Σ2
−

(a) The fiber maps (b) A bony attractor,
for 𝑓0, 𝑓1 and 𝑓2

(c) A thin attractor
without bones,
for 𝑓0 and 𝑓1

Figure 2.5 The fiber maps and the attractors
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In this subsection we will prove the following theorem.

Theorem 2.4.1 The skew product 𝐹0 has a bony attractor without holes in sense of
Definition 2.4.2 (see next subsection).

Later we will prove more general Theorem 2.5.2, but we will prove this particular case
separately in order to illustrate some key ideas in the simplest case.

2.4.2 Definition

Formally, the phase space Σ𝑘 × 𝐼, 𝐼 = [0, 1] is not a smooth manifold, so Defini-
tion 2.2.1 (thus Definition 2.2.2 as well) does not work for step skew products. So, we will
replace the invariant fibration by the vertical fibration with fibers {𝜔} × 𝐼, 𝜔 ∈ Σ𝑘. As we
told in the “Definition of a bony attractor” at page 21, we will first prove that all conditions
hold for the maximal attractor, then show that it coincides with the likely limit set. That
is why we will replace the likely limit set by the maximal attractor in all conditions of the
following definition but the last one.

Definition 2.4.2 Wewill say that a skew product 𝐹∶ Σ𝑘×𝐼 → Σ𝑘×𝐼 has a bony attractor
without holes if the following conditions hold.

1. The maximal attractor intersects each fiber either on a single point, or on a segment (a
bone).

2. The union of the bones is dense in the maximal attractor, and the set of bones has the
cardinality of ℝ.

3. The Hausdorff dimension of themaximal attractor is less than the Hausdorff dimension
of the phase space,

dim𝐻 𝐴𝑚𝑎𝑥 < dim𝐻(Σ𝑘 × 𝐼).

4. The relative complement to the union of the bones in the maximal attractor is dense in
the maximal attractor.

5. The likely limit set coincides with the maximal attractor,

𝐴𝑀 = 𝐴𝑚𝑎𝑥, 𝐴𝑚𝑎𝑥 := ⋂
𝑖⩾0

𝐹𝑖(Σ𝑘 × 𝐼).

The graph part Γ of the maximal attractor is the relative complement of the union of the
bones in the maximal attractor.

All the conditions except for the last one are completely analogous to the conditions of
Definitions 2.2.1 and 2.2.2, and the last condition is slightly stronger than the last condition
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of Definition 2.2.2. Actually, the first condition is trivial in the case of a skew product (see
Lemma 2.4.3 below).

2.4.3 Notation, conventions and first observations

In this subsection we will introduce some useful notation. Though this section is
devoted to step skew products (more precisely, the step skew product given by (2.10)
and (2.11)), we will introduce notation in a more general settings.

Let 𝐵 be a compact metric space equipped with a measure 𝜇. Let 𝐹∶ 𝐵 × 𝐼 → 𝐵 × 𝐼
be a skew product over a homeomorphism ℎ∶ 𝐵 → 𝐵 with strictly increasing fiber maps
𝑓𝑏∶ 𝐼 → 𝐼.

There are many equivalent metrics on the Cartesian product 𝐵 × 𝐼 that define the same
Cartesian product topology. In the sequel we will assume that 𝐵 × 𝐼 is equipped by the
metric

𝑑𝐵×𝐼((𝑏, 𝑥), (𝑏′, 𝑥′)) = max(𝑑𝐵(𝑏, 𝑏′), 𝑑𝐼(𝑥, 𝑥′))

because a ball in this metric is simply the Cartesian product of two balls with equal
radii, one in the base and one in the fiber.

For any 𝑏 ∈ 𝐵 and 𝑛 ∈ ℕ the image 𝐹𝑛(𝐵 × 𝐼) intersects the vertical fiber {𝑏} × 𝐼 on
the segment {𝑏} × 𝐼𝑏,𝑛, where

𝐼𝑏,𝑛 = 𝑓ℎ−1(𝑏) ∘ … ∘ 𝑓ℎ−𝑛(𝑏)(𝐼). (2.12)

Clearly, 𝐵 × 𝐼 = 𝐹0(𝐵 × 𝐼) ⊃ 𝐹1(𝐵 × 𝐼) ⊃ … ⊃ 𝐹𝑛(𝐵 × 𝐼) ⊃ … are compact subsets
of 𝐵 × 𝐼, hence the maximal attractor 𝐴𝑚𝑎𝑥(𝐹) = Cl(⋂𝑛 𝐹𝑛(𝐵 × 𝐼)) coincides with the
intersection ⋂𝑛 𝐹𝑛(𝐵 × 𝐼). Thus for any 𝑏 ∈ 𝐵 the maximal attractor 𝐴𝑚𝑎𝑥 intersects the
fiber {𝑏} × 𝐼 on the set {𝑏} × 𝐼𝑏, where

𝐼𝑏 = ⋂
𝑛⩾0

𝐼𝑏,𝑛 = ⋂
𝑛⩾0

𝑓ℎ−1(𝑏) ∘ … ∘ 𝑓ℎ−𝑛(𝑏)(𝐼). (2.13)

Let 𝜎±
𝑛 (𝑏) (resp., 𝜎±(𝑏)) be the endpoints of the segment 𝐼𝑏,𝑛 (resp., 𝐼𝑏),

𝐼𝑏,𝑛 =: [𝜎−
𝑛 (𝑏), 𝜎+

𝑛 (𝑏)]; 𝐼𝑏 =: [𝜎−(𝑏), 𝜎+(𝑏)]. (2.14)

It is not convenient to write compositions like 𝑓ℎ−1(𝑏) ∘ … ∘ 𝑓ℎ−𝑛(𝑏) every time, so we
will introduce the following notation. For any integer 𝑛 and any point 𝑏 of the base 𝐵, let
𝑓𝑏,𝑛∶ 𝐼 → 𝐼 be the fiber component of the restriction of 𝐹𝑛 to the fiber {𝑏} × 𝐼, i. e.
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𝑓𝑏,𝑛 = 𝑓ℎ𝑛−1(𝑏) ∘ … ∘ 𝑓ℎ(𝑏) ∘ 𝑓𝑏, 𝑛 > 0;

𝑓𝑏,0 = 𝑖𝑑, 𝑛 = 0;

𝑓𝑏,𝑛 = (𝑓ℎ𝑛(𝑏),−𝑛)−1 = 𝑓−1
ℎ𝑛(𝑏) ∘ … ∘ 𝑓−1

ℎ−2(𝑏) ∘ 𝑓−1
ℎ−1(𝑏), 𝑛 < 0.

In the special case of a step skew product 𝐹∶ Σ𝑘
𝐴 × 𝐼 → Σ𝑘

𝐴 × 𝐼 over a Markov shift,
for any admissible finite word 𝑢 denote by 𝑓𝑢∶ 𝐼 → 𝐼 the composition 𝑓𝑢|𝑢|

∘ … ∘ 𝑓𝑢1
,

𝑓𝑢 = 𝑓𝑢|𝑢|
∘ 𝑓𝑢|𝑢|−1

∘ … ∘ 𝑓𝑢2
∘ 𝑓𝑢1

, for a finite word 𝑢 and step skew product 𝐹.

Now we can rewrite Formulas (2.12), (2.13) and (2.14) in the following way,

𝐼𝑏,𝑛 = 𝑓ℎ−𝑛(𝑏),𝑛(𝐼); 𝜎−
𝑛 (𝑏) = 𝑓ℎ−𝑛(𝑏),𝑛(0); 𝜎+

𝑛 (𝑏) = 𝑓ℎ−𝑛(𝑏),𝑛(1);

𝐼𝑏 = ⋂
𝑛⩾0

𝑓ℎ−𝑛(𝑏),𝑛(𝐼); 𝜎−(𝑏) = lim
𝑛→+∞

𝜎−
𝑛 (𝑏); 𝜎+(𝑏) = lim

𝑛→+∞
𝜎−

𝑛 (𝑏).

Let us show that the functions 𝜎±∶ 𝐵 → 𝐼 are semi-continuous.

Lemma 2.4.3 Let 𝐹∶ 𝐵×𝐼 → 𝐵×𝐼 be a skew product with strictly increasing fiber maps.
Then the maximal attractor of 𝐹 intersects each fiber {𝑏}×𝐼 on the segment [𝜎−(𝑏), 𝜎+(𝑏)],
where the function 𝜎−∶ 𝐵 → 𝐼 (resp., 𝜎+∶ 𝐵 → 𝐼) is lower semi-continuous (resp., upper
semi-continuous).

Proof The map 𝐹 is continuous, hence the functions 𝜎−
𝑛 and 𝜎+

𝑛 are continuous as well.
Therefore, the function 𝜎−(𝑏) = sup𝑛 𝜎−

𝑛 (𝑏) is lower semi-continuous, and the function
𝜎+(𝑏) = inf𝑛 𝜎+

𝑛 (𝑏) is upper semi-continuous. ∎

Denote by Ω the set of the sequences 𝜔 ∈ Σ𝑘 such that the maximal attractor 𝐴𝑚𝑎𝑥
intersects the fiber {𝜔} × 𝐼 on a single point (i. e. 𝜎−(𝜔) = 𝜎+(𝜔)). Then the graph part
of the attractor (see Definition 2.4.2) is the intersection 𝐴𝑚𝑎𝑥 ∩ (Ω × 𝐼), and the bones are
the segments [𝜎−(𝜔), 𝜎+(𝜔)] for 𝜔 ∉ Ω.

2.4.4 Existence of bones

Consider the segment 𝐼 = [0.4, 0.6]. Note that

𝑓2(𝐼) = [𝑓2(0.4), 𝑓2(0.6)]

= [
1

2𝜋
arctan(−1) + 0.5, 1

2𝜋
arctan(1) + 0.5] = [0.375, 0.625] ⊃ 𝐼.

Consider a sequence 𝜔 such that 𝜔−𝑛 = 2 for any 𝑛 > 𝑚, i. e.
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𝜔 = …22…2𝜔−𝑚𝜔−𝑚+1…𝜔−1𝜔0𝜔1… (2.15)

Then for any 𝑛 > 𝑚,

𝐼𝜔,𝑛 = 𝑓𝜔−1
∘ 𝑓𝜔−2

∘ … ∘ 𝑓𝜔−𝑚
∘ 𝑓𝑛−𝑚

2 (𝐼) =

= 𝑓𝜎−𝑚𝜔,𝑚 ∘ 𝑓𝑛−𝑚
2 (𝐼) ⊃ 𝑓𝜎−𝑚𝜔,𝑚 ∘ 𝑓𝑛−𝑚

2 (𝐼) ⊃ 𝑓𝜎−𝑚𝜔,𝑚(𝐼).

Therefore, the segment 𝐼𝜔,𝑛 includes the non-trivial segment 𝑓𝜎−𝑚𝜔,𝑚(𝐼). Recall that
𝐼𝜔 is the intersection of the segments 𝐼𝜔,𝑛. Hence, 𝐼𝜔 includes the segment 𝑓𝜎−𝑚𝜔,𝑚(𝐼) as
well, thus 𝜔 ∉ Ω.

Denote by 𝐸 the set of sequences of the form (2.15). In the previous paragraph we
have shown that 𝐸 ∩ Ω = ⌀. Clearly, |𝐸| = |ℝ| and 𝐸 is dense in Σ3. Hence, |Σ3 ∖ Ω| = |ℝ|
and Σ3 ∖ Ω is dense in Σ3. Recall (see Subsection 2.4.3) that the function 𝜎− (resp., 𝜎+)
is lower semi-continuous (resp., upper semi-continuous), and 𝜎−(𝜔) = 𝜎+(𝜔) for 𝜔 ∈ Ω.
Therefore, the density of Σ3 ∖ Ω in Σ3 implies the density of the union of the bones in the
maximal attractor. Thus 𝐹0 satisfies the second condition of Definition 2.4.2.

2.4.5 Hausdorff dimension and measure

The only property of the fiber maps we will use in this subsection is that the images
of the maps 𝑓2

0 and 𝑓2
1 have empty intersection. Therefore, for any point 𝑥 ∈ 𝐼 either

𝑥 ∉ Im 𝑓2
0 or 𝑥 ∉ Im 𝑓2

1.
Consider a finite word 𝑣 = 𝑣−𝑛…𝑣−1. Recall that 𝐶(𝑣) is the set of infinite words

𝜔 ∈ Σ3 such that 𝜔|[−𝑛,−1] = 𝑣. The fiber map depends only on the current symbol of the
sequence, hence the segment 𝐼𝜔,𝑛 is the same for all 𝜔 ∈ 𝐶(𝑣). Denote by 𝐼𝑣 this segment,

𝐼𝑣 = 𝐼𝜔,𝑛 for any sequence 𝜔 ∈ 𝐶(𝑣).

Each interval 𝐼𝑣 can be covered by ⌈3𝑛|𝐼𝑣|⌉ segments of length 3−𝑛. Each cylinder
𝐶(𝑣) can be covered by 3𝑛+1 balls of radii 3−𝑛. Therefore, the Cartesian product 𝐶(𝑣) × 𝐼𝑣
can be covered by 3𝑛+1 ⌈3𝑛|𝐼𝑣|⌉ balls of radii 3−𝑛.

The union of the Cartesian products 𝐶(𝑣) × 𝐼𝑣 for all words 𝑣 of length 𝑛 coincides
with 𝐹𝑛(Σ3 × 𝐼), hence this union includes the maximal attractor. On the other hand, this
union can be covered by

3𝑛+1
∑
|𝑣|=𝑛

⌈3𝑛|𝐼𝑣|⌉ ⩽ 3𝑛+1
∑
|𝑣|=𝑛

(3𝑛|𝐼𝑣| + 1) = 32𝑛+1
∑
|𝑣|=𝑛

|𝐼𝑣| + 32𝑛+1 (2.16)

balls of radii 3−𝑛.
Let us estimate the sum Σ𝑣|𝐼𝑣|. Let 𝐷𝑥,𝑛 be the set of the words 𝑣 such that 𝑥 ∈ 𝐼𝑣,
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𝐷𝑥,𝑛 = {𝑣 || |𝑣| = 𝑛, 𝑥 ∈ 𝐼𝑣}.

Applying Fubini Theorem to the set {(𝑣, 𝑥) || |𝑣| = 𝑛, 𝑥 ∈ 𝐼𝑣}, we obtain

∑
|𝑣|=𝑛

|𝐼𝑣| = ∫
𝐼

||𝐷𝑥,𝑛
|| 𝑑𝑥 ⩽ max

𝑥∈𝐼
||𝐷𝑥,𝑛

|| .

Therefore, it is sufficient to estimate the right hand side of this inequality.
Let us prove that ||𝐷𝑥,𝑛+2

|| ⩽ 8 ||𝐷𝑥,𝑛
|| for any 𝑥 ∈ 𝐼. Note that for any word 𝑣 ∈ 𝐷𝑥,𝑛+2

the word 𝑢 = 𝑣−𝑛…𝑣−1 must be an element of 𝐷𝑥,𝑛, i. e. 𝑣 = 𝑣−𝑛−2𝑣−𝑛−1𝑢, 𝑢 ∈ 𝐷𝑥,𝑛.
Indeed,

𝐼𝑣 = (𝑓𝑣−1
∘ … ∘ 𝑓𝑣−𝑛

) ∘ (𝑓𝑣−𝑛−1
∘ 𝑓𝑣−𝑛−2

)(𝐼) ⊂ 𝑓𝑣−1
∘ … ∘ 𝑓𝑣−𝑛

(𝐼) = 𝐼𝑢,

hence 𝑥 ∈ 𝐼𝑢, and 𝑢 ∈ 𝐷𝑥,𝑛. Therefore, ||𝐷𝑥,𝑛+2
|| ⩽ 9 ||𝐷𝑥,𝑛

||. In order to prove that
||𝐷𝑥,𝑛+2

|| ⩽ 8 ||𝐷𝑥,𝑛
||, it is sufficient to show that for any word 𝑢 ∈ 𝐷𝑥,𝑛 there exists a couple

of symbols 𝑣−𝑛−2 and 𝑣−𝑛−1 such that 𝑣−𝑛−2𝑣−𝑛−1𝑢 ∉ 𝐷𝑥,𝑛+2.
Consider the point 𝑥′ = 𝑓−1

𝑢−𝑛
∘ … ∘ 𝑓−1

𝑢−1
(𝑥). As we noted in the beginning of this

subsection, either 𝑥′ ∉ 𝑓2
0(𝐼), or 𝑥′ ∉ 𝑓2

1(𝐼), therefore either 00𝑢 ∉ 𝐷𝑥,𝑛+2, or 11𝑢 ∉
𝐷𝑥,𝑛+2. Hence, ||𝐷𝑥,𝑛+2

|| ⩽ 8 ||𝐷𝑥,𝑛
||.

Thus ||𝐷𝑥,𝑛
|| ⩽ const(√8)𝑛, and

∑
|𝑣|=𝑛

|𝐼𝑣| ⩽ ∫
𝐼

const(√8)𝑛 = const(√8)𝑛.

Now let us estimate the sum (2.16).

32𝑛+1
∑
|𝑣|=𝑛

|𝐼𝑣| + 32𝑛+1 ⩽ const ·32𝑛+1(√8)𝑛 + 32𝑛+1 < const ·(9√8)𝑛.

Hence, the Hausdorff dimension of the maximal attractor is at most log3 9√8<3, thus
the measure of 𝐴𝑚𝑎𝑥 is zero9. Hence, 𝐹0 satisfies the third condition of Definition 2.4.2.

2.4.6 Density of the graph

Now let us prove that the bones belong to the closure of the graph, i. e. the maximal
attractor coincides with the closure of the graph Γ of the restriction 𝜎+|Ω. Let (𝜔, 𝑥) be

9 Recall that we equip the phase space Σ3 × 𝐼 with the Cartesian product of the Bernoulli measure on Σ3 and
the Lebesgue measure on 𝐼.
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a point of the maximal attractor, 𝐶(𝑣) × 𝑈 be its standard neighborhood, i. e. 𝐶(𝑣) is a
cylinder corresponding to the word 𝑣 = 𝜔−𝑛…|𝜔0…𝜔𝑛, and 𝑈 is a neighborhood of 𝑥.

We need to find a point of the graph Γ in the product 𝐶(𝑣) × 𝑈. Actually, we will
find a point of Γ in the smaller set 𝐶(𝑣) × {𝑥}. The graph Γ is invariant under 𝐹, hence
it is sufficient to find a point of Γ in 𝐹−𝑛(𝐶(𝑣) × {𝑥}) = 𝐶(𝜎−𝑛𝑣) × {𝑓𝜔,−𝑛(𝑥)}. Denote
𝑥′ = 𝑓𝜔,−𝑛(𝑥). Then 𝐹−𝑛(𝐶(𝑣)×{𝑥}) = 𝐶(𝜎−𝑛𝑣)×{𝑥′}. So we are looking for a sequence
𝜂 such that 𝜂 ∈ 𝐶(𝜎−𝑛𝑤) and 𝐼𝜂 = {𝑥′}. Note that the former property depends only on
the right tail of 𝜂, while the latter property depends only on the left tail of 𝜂. Hence, we
can choose those tails independently. For the right tail 𝜂+ we can just take any sequence
starting with 𝜎−𝑛𝑣.

Note that the images of the maps 𝑓0 and 𝑓1 cover 𝐼. Hence, for any point 𝑦 ∈ 𝐼, either
𝑓−1

0 (𝑦), or 𝑓−1
1 (𝑦) is defined. Therefore, we can choose a sequence 𝜂− = …𝜂−𝑘…𝜂−1 of

zeroes and ones such that for any 𝑘 the point 𝑓𝜂−,−𝑘(𝑥′) belongs to the image of 𝑓𝜂−𝑘−1
,

thus 𝑥′ ∈ 𝐼𝜂−. On the other hand, the maps 𝑓0 and 𝑓1 contract on 𝐼 with coefficient 0.6,
hence the length of 𝐼𝜂−,𝑚 is equal to 0.6𝑚. Finally, 0.6𝑚 tends to zero as 𝑚 tends to infinity,
thus |𝐼𝜂− | = 0, and 𝐼𝜂− = {𝑥′}.

So, the map 𝐹0 satisfies the fourth condition of Definition 2.4.2.

2.4.7 Coincidence of attractors

Let us prove that the maximal attractor of 𝐹0 coincides with the likely limit set. Note
that a point (𝜂, 𝑥′) of the graph Γ belongs to the 𝜔-limit set of a point (𝜔, 𝑥) if the sequence
𝜂 belongs to the 𝜔-limit set of the sequence 𝜔. Indeed, if the sequences 𝜎𝑛𝜔 and 𝜂 coincide
on the segment [−𝑁, 𝑁], then 𝑓𝜎𝑛𝜔(𝑥) ∈ 𝐼𝜂,𝑁. On the other hand, 𝑥′ is the only common
point of the intervals 𝐼𝜂,𝑁.

The likely limit set (see Definition 2.1.9 at page 14) of the Bernoulli shift is Σ3, hence
the likely limit set of the skew product 𝐹0 includes the graph Γ. Therefore, the likely limit
set includes the closure of the graph, i. e. the maximal attractor. On the other hand, the
maximal attractor includes the likely limit set for any dynamical system. Thus, 𝐴𝑚𝑎𝑥 =
𝐴𝑀.

Finally, the map 𝐹0 has a bony attractor without holes in the sense of Definition 2.4.2.

2.5 Open set of step skew products

In the previous section we have constructed a single dynamical system with a bony
attractor. Now it is natural to ask whether this property survives under a small perturbation
in some ambient space. This section deals with the perturbations in the space of step skew
products. At the same time we will replace a Bernoulli shift by a Markov shift.
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Theorem 2.5.1 Consider a Markov shift with transition matrix 𝐴 of size 𝑘 × 𝑘, 𝑘 ⩾ 2,
such that 𝐴𝑖𝑗 ≠ 0 for any 𝑖, 𝑗. Then there exists a non-empty open set in the space of
step skew products over the Markov shift 𝜎𝐴 with the fiber 𝐼 = [0, 1] such that each skew
product from this set has a bony attractor without holes.

Let 𝐽 = 𝐽(𝑓0, …, 𝑓𝑘−1) be the convex hull of the set of fixed points of the fiber maps.
Then the strip Σ𝑘

𝐴 ×𝐽 includes the maximal attractor 𝐴𝑚𝑎𝑥(𝐹). Indeed, all the points above
this strip go downwards, and all the points below this strip go upwards.

The following theorem provides simple sufficient conditions for Theorem 2.5.1.

Theorem 2.5.2 Let 𝑓0, …, 𝑓𝑘−1∶ 𝐼 → 𝐼 be strictly increasing maps such that

1. there exists a finite set of elements 𝑓𝑢𝑗 of the semi-group generated by the maps 𝑓𝑖 such
that each map 𝑓𝑢𝑗 contracts on 𝐼, and the images of the segment 𝐽 under these maps
cover the segment 𝐽;

2. there exists a finite composition of the maps 𝑓𝑖 such that this composition has a re-
pelling fixed point.

Then the corresponding step skew product 𝐹∶ Σ𝑘
𝐴 × 𝐼 → Σ𝑘

𝐴 × 𝐼 has a bony attractor
without holes.

The proof of this theorem is very similar to the proof of Theorem 2.4.1. The compo-
sition from the second condition plays the role of the map 𝑓2, and the maps 𝑓𝑢𝑗 play the
role of the maps 𝑓0 and 𝑓1.

The next subsection reduces Theorem 2.5.1 to Theorem 2.5.2, and the rest of this
section is devoted to the proof of Theorem 2.5.2.

2.5.1 An open set of examples

In this subsection we will construct a non-empty open set of step skew products such
that each system from this set satisfies the assumptions of Theorem 2.5.2. Thus we will
reduce Theorem 2.5.1 to Theorem 2.5.2.

For any 𝑘 ⩾ 3 one can find a non-empty open set of step skew products such that each
skew product from this set is similar to the basic example, see Section 2.4. Namely, let 𝑓0
and 𝑓1 be two maps contracting to the points 𝑥0 < 𝑥1, and 0.5 < 𝑓′

0, 𝑓′
1 < 1. Let us choose

maps 𝑓2, …, 𝑓𝑘−1, such that 𝑓𝑖(𝐼) ⊂ (𝑥0, 𝑥1), and one of these maps has a repelling fixed
point. Then Condition 2 holds. Moreover, in this case 𝐽 = [𝑥0, 𝑥1], and the inequality
0.5 < 𝑓′

0, 𝑓′
1 implies Condition 1. It is easy to see that the set of tuples (𝑓0, …, 𝑓𝑘−1)

described in this paragraph is not empty and open in 𝐶1 topology.
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0.2
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𝑓0𝑓1

𝑅 = 38/1150 1

1

𝐼
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𝑓 2
1 𝑓0

𝑓 5
1

0 1

1

𝐼

𝐼

(a) The fiber maps (b) The composition
𝑓0 ∘ 𝑓1 has a repelling

fixed point 𝑅

(c) Contracting
compositions whose

images cover 𝐼

Figure 2.6 A step skew product over 𝜎∶ Σ2 → Σ2 that satisfies the conditions of Theo-
rem 2.5.2.

It is harder to find an example for 𝑘 = 2. Let 𝑓0 be the piecewise-linear map with the
vertices at (0, 0), (0.6, 0.2), (1, 0.8) and 𝑓1 be the piecewise-linear map with the vertices
at (0, 0.15), (0.4, 0.8), (1, 1) (see Figure 2.6 (a)). It is easy to see that 38

115 is a repelling
fixed point of the composition 𝑓0𝑓1 (see Figure 2.6 (a)). The hard step is to find the com-
positions 𝑓𝑤𝑗. I have written a computer program (thanks C++, STL and Boost), and this
program found that 𝑓3

0, 𝑓2
0𝑓1, 𝑓2

1𝑓0 and 𝑓5
1 (see Figure 2.6 (c)) satisfy the first condition of

Theorem 2.5.2. Note that once the compositions are found, one can check that they really
satisfy the first condition of Theorem 2.5.2 without computer.

The only problem is that the constructed example is not smooth, but it is easy to over-
come this problem by replacing the vertices by sufficiently small arcs. Sufficiently small
neighborhood of this system will satisfy assumptions as well.

2.5.2 Existence of bones

Let 𝑓𝑣 = 𝑓𝑣1
…𝑓𝑣𝑛

be a composition having a repelling fixed point 𝑅. Then for suffi-
ciently small segment 𝐼 ∋ 𝑅, the image of 𝐼 under 𝑓𝑣 includes 𝐼. Then for any sequence
of the form

𝜔 = …𝑣𝑣…𝑣𝜔−𝑚…𝜔−1|𝜔0…

and any 𝑛 = 𝑚 + 𝑙|𝑣| we have

𝐼𝜔,𝑛 = 𝑓𝜔−1
∘ … ∘ 𝑓𝜔−𝑚

∘ 𝑓𝑙
𝑣(𝐼) ⊃ 𝑓𝜔−1

∘ … ∘ 𝑓𝜔−𝑚
(𝐼).
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Hence, the intersection 𝐼𝜔 = ⋂𝑛 𝐼𝜔,𝑛 includes the segment 𝑓𝜔−1
∘ … ∘ 𝑓𝜔−𝑚

(𝐼) as well.
Thus 𝜔 ∉ Ω. Obviously, the set of sequences 𝜔 of this form is dense in Σ𝑘

𝐴, and has the
cardinality of ℝ.

So, the second condition of Definition 2.4.2 holds.

2.5.3 Hausdorff dimension and measure

The proof mostly repeats the proof for the basic example. Consider the maps 𝑓𝑢𝑗. The
images of 𝐽 under these maps cover 𝐽, hence at least two of these maps contract to different
points. Without loss of generality, we can assume that the maps 𝑓𝑢0 and 𝑓𝑢1 contract to
different points. Therefore, the images of 𝐼 under some powers of these maps have empty
intersection, 𝑓𝑚

𝑢0(𝐼) ∩ 𝑓𝑚
𝑢1(𝐼) = ∅.

Lemma 2.5.3 Consider a step skew product over a Markov shift 𝜎∶ Σ𝑘
𝐴 → Σ𝑘

𝐴 such that
the transition matrix 𝐴 has no zeroes. Let 𝑓0, …, 𝑓𝑘−1∶ 𝐼 → 𝐼 be the fiber maps of this
skew product. Suppose that there exists a finite number of compositions 𝑓𝑣𝑗 such that the
intersection of images of 𝐼 under these compositions is empty,

⋂
𝑗

𝑓𝑣𝑗(𝐼) = ∅.

Then the maximal attractor has Hausdorff dimension less than 3, and its measure is zero.

Proof Denote by the least of the probabilities in the matrix 𝐴. Denote by 𝑁 the length
of the longest word among 𝑣𝑗. Then for any point 𝑥 ∈ 𝐼 there exists a composition 𝑓𝑣 of
length 𝑁 such that 𝑥 ∉ 𝑓𝑣(𝐼).

Denote by 𝐷𝑥,𝑛 the set of the words 𝑤 = 𝑤−𝑛…𝑤−1 of length 𝑛 such that 𝑥 ∈ 𝑓𝑤(𝐼),

𝐷𝑥,𝑛 = {𝑤 = 𝑤−𝑛…𝑤−1 || 𝑥 ∈ 𝑓𝑤(𝐼)}. (2.17)

For each word 𝑤 ∈ 𝐷𝑥,𝑛+𝑁, the word 𝑢 = 𝑤−𝑛…𝑤−1 must be an element of 𝐷𝑥,𝑛.
Hence, #𝐷𝑥,𝑛+𝑁 ⩽ 𝑘𝑁#𝐷𝑥,𝑛. Moreover, for any word 𝑢 ∈ 𝐷𝑥,𝑛 there exists a word 𝑣 of
length 𝑁 such that 𝑣𝑢 ∉ 𝐷𝑥,𝑛+𝑁. Therefore, #𝐷𝑥,𝑛+𝑁 ⩽ (𝑘𝑁 −1)#𝐷𝑥,𝑛 and 𝜇𝐶(𝐷𝑥,𝑛+𝑁) ⩽
(1 − 𝑁)𝜇𝐶(𝐷𝑥,𝑛). Here 𝐶(𝐷𝑥,𝑛) is the union of all cylinders corresponding to the words
in 𝐷𝑥,𝑛,

𝐶(𝐷𝑥,𝑛) = ⋃
𝑤∈𝐷𝑥,𝑛

𝐶(𝑤).

Let 𝐷𝑥 be the set of the infinite words 𝜔 ∈ Σ𝑘
𝐴 such that 𝑥 ∈ 𝐼𝜔. Obviously, 𝐷𝑥 is the

intersection of all the cylinders 𝐶(𝐷𝑥,𝑛),
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𝐷𝑥 := {𝜔 ∈ Σ𝑘 |
| (𝜔, 𝑥) ∈ 𝐴𝑚𝑎𝑥} = ⋂

𝑛
𝐶(𝐷𝑥,𝑛).

Hence, the measure of 𝐷𝑥 equals zero for all 𝑥. Therefore, the measure of 𝐴𝑚𝑎𝑥 equals
zero as well.

Now let us show that the Hausdorff dimension of 𝐴𝑚𝑎𝑥 is less than 3. As in the basic
example, we have #𝐷𝑥,𝑛 ⩽ const ·(𝑘𝑁 − 1)𝑛/𝑁. Therefore,

∑
|𝑤|=𝑛

|𝐼𝑤| = ∫
𝐼

#𝐷𝑥,𝑛 𝑑𝑥 ⩽ const ·(𝑘𝑁 − 1)𝑛/𝑁,

and the maximal attractor can be covered by at most

𝑘𝑛+1
∑

|𝑤|=𝑛
⌈𝑘𝑛|𝐼𝑤|⌉ ⩽ 𝑘2𝑛+1

∑
|𝑤|=𝑛

|𝐼𝑤| + 𝑘2𝑛+1

⩽ const ·𝑘2𝑛+1(𝑘𝑁 − 1)𝑛/𝑁 + 𝑘2𝑛+1 ⩽ const ·𝑘2𝑛(𝑘𝑁 − 1)𝑛/𝑁

balls of radii 𝑘−𝑛. Therefore, the Hausdorff dimension of the maximal attractor is at
most

dim𝐻 𝐴𝑚𝑎𝑥 ⩽ log𝑘 𝑘2(𝑘𝑁 − 1)1/𝑁 < 3.

∎

So, the third condition of Definition 2.4.2 holds.

2.5.4 Absence of holes

The proof of the last two conditions of Definition 2.4.2 for a step skew product 𝐹
satisfying the assumptions of Theorem 2.5.2 repeats the proof for the basic example 𝐹0
with minor modifications.

In the proof from Subsection 2.4.6 it is sufficient to replace the maps 𝑓0 and 𝑓1 by the
maps 𝑓𝑢𝑗, and the number 0.6 by the maximum of the derivatives of the maps 𝑓𝑢𝑗.

The proof in Subsection 2.4.7 needs even less modifications— it is sufficient to replace
Σ3 by Σ𝑘

𝐴.

2.6 Smooth example

In this section we will construct a single smooth dynamical system having a bony
attractor without holes. Our system will be a skew product over the Smale–Williams so-
lenoid map (2.4) for 𝑘 = 6 and = 0.2:
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𝑠∶ (𝑧, 𝑤) ↦ (𝑧6, 0.5𝑧 + 0.2𝑤).

The solenoid map is not bijective on the whole solid torus, but the map 𝑠 is bijective
on its maximal attractor 𝐴𝑚𝑎𝑥(𝑠), and the restriction of the solenoid map to the maximal
attractor is semi-conjugated to the Bernoulli shift 𝜎∶ Σ6 → Σ6. For the details about the
fate map Φ that semi-conjugates 𝑠 to the Bernoulli shift see Subsection 2.3.2.

In our example the fiber maps depend only on the future part of the fate, i. e. only on
𝑧 coordinate of the point in the base,

𝐹𝑆∶ ((𝑧, 𝑤), 𝑥) ↦ (𝑠(𝑧, 𝑤), 𝑓𝑧(𝑥)).

On the subsets 𝐴0, 𝐴2 and 𝐴4 the fiber maps 𝑓𝑧 coincide with 𝑓0, 𝑓1 and 𝑓2, respec-
tively. Then we extend the map to the solid torus using linear interpolation on the subsets
𝐴1, 𝐴3 and 𝐴5.

Theorem 2.6.1 The restriction of the map 𝐹𝑆 to the set 𝐴𝑚𝑎𝑥(𝑠)×𝐼 has a bony attractor
without holes.

The proof of this theoremmostly repeats the proof of Theorem 2.5.2. The only difficult
part is to adopt the definition of 𝐷𝑥,𝑛 and prove the inequality #𝐷𝑥,𝑛+𝑁 ⩽ (6𝑁 −1)#𝐷𝑥,𝑛. It
is slightly more difficult because the preimage 𝑓𝜔,−𝑛 now depends on the whole sequence
𝜔 instead of only the symbols 𝜔−𝑛, …, 𝜔−1. However, it turns out that the set of possible
preimages 𝑓𝜔,−𝑛 for 𝜔 belonging to a ball or radius 𝜆−𝑛 is uniformly small. This uniform
estimate allows us to complete the proof.

We will not provide the detailed proof of Theorem 2.6.1. In the next section we will
prove a more general Theorem 2.7.3.

2.7 Mild skew products

In this section we will construct a non-empty open set of mild skew products over
the Bernoulli shift having bony attractor without holes. In order to simplify the proof in
Section 2.8, we need to consider not only the skew products such that the fiber maps 𝑓𝜔
are Lipschitz on 𝜔, but also the skew products such that the fiber maps 𝑓𝜔 are only Hölder
on 𝜔.

Fix some constants 𝐶 > 0 and 𝛼 < 1. Consider the space of Hölder skew products with
smooth fiber maps,

𝑔𝜔 ∈ 𝐶1(𝐼), (2.18)

‖𝑔𝜔 − 𝑔𝜂‖𝐶0 ⩽ 𝐶 𝑑(𝜔, 𝜂)𝛼 (2.19)
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The distance between two maps 𝐺 and 𝐺 in this space is the maximum of the 𝐶1

distances between their fiber maps,

𝑑(𝐺, 𝐺) = max
𝜔∈Σ𝑘

‖𝑔𝜔 − 𝑔𝜔‖𝐶1.

Theorem 2.7.1 There exists a non-empty open set in the space of Hölder skew products
such that each map from this set has a bony attractor without holes.

Definition 2.7.2 We will say that a skew product 𝐹 over the Bernoulli (Markov) shift 𝜎
has step set 𝑆 ⊂ {0, …, 𝑘 − 1} if 𝜔0 = 𝜂0 ∈ 𝑆 implies 𝑓𝜔 = 𝑓𝜂. The maps 𝑓𝜔 for 𝜔0 ∈ 𝑆
are called step fiber maps of 𝐹.

We will use slightly modified versions of the fiber maps from the basic example.
Namely, let the functions 𝑓0, 𝑓1 and 𝑓2 be given by

𝑓0∶ 𝑥 ↦ 0.9𝑥 + 0.001,

𝑓1∶ 𝑥 ↦ 0.999 − 0.9(1 − 𝑥),

𝑓2∶ 𝑥 ↦ 1
2𝜋

arctan(10(𝑥 − 0.5)) + 0.5.

The following theorem provides us a list of conditions such that for any Lipschitz skew
product 𝐹 satisfying this condition there exists a small neighborhood of 𝐹 in the space of
Hölder continuous skew products that satisfies Theorem 2.7.1. In Subsection 2.7.1 we
will prove some technical lemmas. Then in Subsections 2.7.2—2.7.5 we will show that a
sufficiently small perturbation of the map 𝐹 has a bony attractor without holes.

Theorem 2.7.3 Suppose that a skew product 𝐹 over a Markov shift with an irreducible
aperiodic transition matrix 𝐴 satisfies the following conditions.

1. For any symbol 𝑣0 from the alphabet {0, …, 𝑘 − 1}, and 𝑖 = 0, 1, 2 there exists a
symbol 𝑢0 such that 𝑢0𝑣0 is an admissible word, 𝑢0 belongs to the step set of 𝐹, and the
corresponding step fiber map 𝑓𝑢0

is 𝑓𝑖.
2. Both fiber maps 𝑓𝜔 and the inverse maps 𝑓−1

𝜔 are bi-Lipschitz with constant 𝐿𝑓 ,

sup
𝜔

max (‖𝑓′
𝜔‖𝐶0, ‖(𝑓−1

𝜔 )′‖𝐶0) < 𝐿𝑓. (2.20)

3. The fiber maps 𝑓𝜔 and the inverse maps 𝑓−1
𝜔 are Lipschitz on 𝜔 with constant 𝐿𝑏 ,

‖𝑓𝜔 − 𝑓𝜂‖𝐶0 < 𝐿𝑏𝑑(𝜔, 𝜂), ‖𝑓−1
𝜔 − 𝑓−1

𝜂 ‖𝐶0 < 𝐿𝑏𝑑(𝜔, 𝜂). (2.21)

4. The map 𝐹 is partially hyperbolic with vertical central fibration. Moreover,
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𝐿𝑓 < 𝜆 and 𝐿𝑓 < 𝜆𝛼.

5. There exists an interval 𝐽 = [𝑎, 𝑏] ⊂ 𝐼 such that
− if 𝑓𝜔(𝑥) ∈ 𝐼 ∖ 𝐽, then 𝑓′

𝜔(𝑥) < const <1;
− the open intervals

(𝑓0(𝑎) +
𝐿𝑏

𝜆 − 𝐿𝑓
, 𝑓0(𝑏) −

𝐿𝑏
𝜆 − 𝐿𝑓 ) and (𝑓1(𝑎) +

𝐿𝑏
𝜆 − 𝐿𝑓

, 𝑓1(𝑏) −
𝐿𝑏

𝜆 − 𝐿𝑓 )

cover 𝐽.

Then for sufficiently small 𝛿 any Hölder skew product 𝐺 with Hölder exponent 𝛼 which is
𝛿-close to 𝐹 in 𝐶1 metric,

𝑑(𝐹, 𝐺) = max
𝜔∈Σ𝑘

‖𝑓𝜔 − 𝑔𝜔‖𝐶1 < 𝛿, (2.22)

has a bony attractor without holes.

We can assume that the perturbation is so small that the fiber maps 𝑔±1
𝜔 are Lipschitz

with constant 𝐿𝑓 as well,

sup
𝜔

max (‖𝑔′
𝜔‖𝐶0, ‖(𝑔−1

𝜔 )′‖𝐶0) < 𝐿𝑓.

Notation 2.7.4 Denote by 𝑆𝑗 the set of symbols 𝑖 ∈ 𝑆 such that the corresponding step
fiber map is 𝑓𝑗. Then the first condition of Theorem 2.7.3 can be reformulated in the
following way. For any symbol 𝑣0 and any 𝑗 = 0, 1, 2 there exists 𝑢0 ∈ 𝑆𝑗 such that the
word 𝑢0𝑣0 is admissible.

2.7.1 Technical lemmas

The following lemma generalizes Lemma 3.1 from [6]. The original lemma deals with
the case 𝑠 = 𝑚. Gorodetski and Ilyashenko also studied the case 𝑠 > 𝑚/2 in Lemma 4.1 of
the same article.

Lemma 2.7.5 For any 𝐿𝑓, 𝛼, 𝜆 and 𝐶 there exists a number 𝐾 = 𝐾(𝐿𝑓, 𝛼, 𝜆, 𝐶) such that
the following holds. Let 𝐹 be a skew product over a Markov shift that satisfies conditions 2,
3 and 4 of Theorem 2.7.3, let 𝑆 be the step set of the map 𝐹. Let 𝐺 be a Hölder continuous
skew product 𝛿-close to 𝐹 in 𝐶1 metric. Let 𝑚 > 𝑠 ⩾ 0 be two integer numbers. Let 𝜔 and
𝜂 be two bi-infinite words such that

• 𝜔𝑖 = 𝜂𝑖 for |𝑖| < 𝑚;
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• 𝜔𝑖 ∈ 𝑆 for 𝑚 − 𝑠 ⩽ 𝑖 < 𝑚.

Then

|𝑔𝜔,𝑚 − 𝑔𝜂,𝑚| ⩽ 𝐾𝛿𝛽 +
𝐿𝑏

𝜆 − 𝐿𝑓
· (

𝐿𝑓

𝜆 )

𝑠
,

where 𝛽 = 1 − log𝜆𝛼 𝐿𝑓.

Proof Denote by 𝛿𝑖 the 𝐶0-norm of the difference 𝑔𝜔,𝑖 − 𝑔𝜂,𝑖,

𝛿𝑖 = ‖𝑔𝜔,𝑖 − 𝑔𝜂,𝑖‖𝐶0.

Since fiber maps 𝑔𝜔 are Lipschitz with constant 𝐿𝑓,

𝛿𝑖+1 ⩽ 𝐿𝑓𝛿𝑖 + ‖𝑔𝜎𝑖𝜔 − 𝑔𝜎𝑖𝜂‖𝐶0. (2.23)

Indeed, for any 𝑥 ∈ 𝐼 we have

|𝑔𝜔,𝑖+1(𝑥) − 𝑔𝜂,𝑖+1(𝑥)| = |𝑔𝜎𝑖𝜔(𝑔𝜔,𝑖(𝑥)) − 𝑔𝜎𝑖𝜂(𝑔𝜂,𝑖(𝑥))| ⩽

⩽ |𝑔𝜎𝑖𝜔(𝑔𝜔,𝑖(𝑥)) − 𝑔𝜎𝑖𝜔(𝑔𝜂,𝑖(𝑥))| + |𝑔𝜎𝑖𝜔(𝑔𝜂,𝑖(𝑥)) − 𝑔𝜎𝑖𝜂(𝑔𝜂,𝑖(𝑥))| ⩽

⩽ 𝐿𝑓𝛿𝑖 + ‖𝑔𝜎𝑖𝜔 − 𝑔𝜎𝑖𝜂‖𝐶0.

Step 0. Preparations. In order to use (2.23), we need to estimate the second summand.
For each 𝑖 = 0, …, 𝑚 − 1, we will use one of the following estimations.

1. Due to (2.19),

|𝑔𝜎𝑖𝜔 − 𝑔𝜎𝑖𝜂| ⩽ 𝐶 · 𝑑(𝜎𝑖𝜔, 𝜎𝑖𝜂)𝛼 ⩽ 𝐶𝜆(−𝑚+𝑖)𝛼. (2.24)

2. Due to (2.21) and (2.22),

|𝑔𝜎𝑖𝜔 − 𝑔𝜎𝑖𝜂| ⩽ |𝑔𝜎𝑖𝜔 − 𝑓𝜎𝑖𝜔| + |𝑓𝜎𝑖𝜔 − 𝑓𝜎𝑖𝜂| + |𝑓𝜎𝑖𝜂 − 𝑔𝜎𝑖𝜂| ⩽ 2𝛿 + 𝐿𝑏𝜆−𝑚+𝑖. (2.25)

3. Moreover, for 𝑖 ⩾ 𝑚 − 𝑠 we have 𝑓𝜎𝑖𝜔 = 𝑓𝜎𝑖𝜂, hence

|𝑔𝜎𝑖𝜔 − 𝑔𝜎𝑖𝜂| ⩽ 2𝛿, for 𝑖 ⩾ 𝑚 − 𝑠. (2.26)

Let us choose 𝑙 such that

𝐶𝜆(−𝑙−1)𝛼 ⩽ 2𝛿 < 𝐶𝜆−𝑙𝛼. (2.27)

We will use the first estimate for 𝑖 < 𝑚 − 𝑙, the second one for 𝑚 − 𝑙 ⩽ 𝑖 < 𝑚 − 𝑠, and the
last one for 𝑖 ⩾ 𝑚 − 𝑠. These estimates will lead to linear recurrent inequalities for 𝛿𝑖. The
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key idea is that the solutions of the corresponding recurrent equations are sums of some
increasing geometric progressions, hence they are of the same order as the last summand.

The only technical detail is that some of the ranges [0, 𝑚 − 𝑙 − 1], [𝑚 − 𝑙, 𝑚 − 𝑠 − 1] and
[𝑚 − 𝑠, 𝑚 − 1] can be empty. However, it is sufficient to prove the lemma for sufficiently
large 𝑚. Indeed, if 𝑚1 < 𝑚2, then the upper estimate for 𝛿𝑚1−𝑖 for 𝑚 = 𝑚1 is less than the
upper estimate for 𝛿𝑚2−𝑖 for 𝑚 = 𝑚𝑠. In particular, the upper estimate for 𝛿𝑚1

for 𝑚 = 𝑚1
is less than the upper estimate for 𝛿𝑚2

for 𝑚 = 𝑚2. Hence, we can assume that 𝑚 > 𝑙.
Step 1. 0 ⩽ 𝑖 < 𝑚 − 𝑙. Due to (2.23) and (2.24),

𝛿𝑖+1 ⩽ 𝐿𝑓𝛿𝑖 + 𝐶𝜆(−𝑚+𝑖)𝛼.

Recall that 𝛿0 = 0, hence by induction one can easily prove that

𝛿𝑖 ⩽ 𝐶𝜆−𝑚𝛼
𝜆𝑖𝛼 − 𝐿𝑖

𝑓

𝜆𝛼 − 𝐿𝑓
.

In particular, if 𝑚 ⩾ 𝑙, then

𝛿𝑚−𝑙 ⩽ 𝐶𝜆−𝑚𝛼
𝜆(𝑚−𝑙)𝛼 − 𝐿𝑚−𝑙

𝑓

𝜆𝛼 − 𝐿𝑓
< 𝐶 𝜆−𝑙𝛼

𝜆𝛼 − 𝐿𝑓
⩽ 2𝛿𝜆𝛼

𝜆𝛼 − 𝐿𝑓
. (2.28)

Step 2. 𝑚 − 𝑙 ⩽ 𝑖. Due to (2.23) and (2.25),

𝛿𝑖+1 ⩽ 𝐿𝑓𝛿𝑖 + 2𝛿 + 𝐿𝑏𝜆−𝑚+𝑖.

Moreover, for 𝑖 ⩾ 𝑚 − 𝑠,

𝛿𝑖+1 ⩽ 𝛿𝑖𝐿𝑓 + 2𝛿.

Let us divide each inequality by 𝐿𝑖+1
𝑓 , and sum up the results for 𝑖 = 𝑚 − 𝑙, …, 𝑚 − 1,

𝛿𝑚
𝐿𝑚

𝑓
⩽

𝛿𝑚−𝑙

𝐿𝑚−𝑙
𝑓

+ 2𝛿
𝐿𝑓

𝑚−1

∑
𝑖=𝑚−𝑙

1
𝐿𝑖

𝑓
+

𝐿𝑏
𝜆𝑚𝐿𝑓 ∑

𝑚−𝑙⩽𝑖<𝑚−𝑠
(

𝜆
𝐿𝑓 )

𝑖
, (2.29)

where the last sum is zero if 𝑙 ⩽ 𝑠.
Let us estimate the sums of finite geometric progressions by the sums of the corre-

sponding infinitely decreasing geometric progressions,
𝑚−𝑠

∑
𝑖=𝑚−𝑙

1
𝐿𝑖

𝑓
<

∞

∑
𝑖=𝑚−𝑙

1
𝐿𝑖

𝑓
= 1

𝐿𝑚−𝑙−1
𝑓 (𝐿𝑓 − 1)

.
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∑
𝑚−𝑙⩽𝑖<𝑚−𝑠

(
𝜆

𝐿𝑓 )

𝑖
<

∞

∑
𝑖=𝑠−𝑚+1

(
𝐿𝑓

𝜆 )

𝑖
=

𝐿𝑠−𝑚+1
𝑓

𝜆𝑠−𝑚(𝜆 − 𝐿𝑓)

Let us substitute these estimates into (2.29) and multiply both sides by 𝐿𝑚
𝑓 ,

𝛿𝑚 ⩽ 𝛿𝑚−𝑙𝐿𝑙
𝑓 +

2𝛿𝐿𝑙
𝑓

𝐿𝑓 − 1
+

𝐿𝑏𝐿𝑠
𝑓

𝜆𝑠(𝜆 − 𝐿𝑓)
(2.30)

Due to the right part of the inequality (2.27),

𝐿𝑙
𝑓 = (𝜆𝛼𝑙)

log 𝐿𝑓
𝛼 log 𝜆 < (

𝐶
2𝛿)

log 𝐿𝑓
𝛼 log 𝜆 .

Let us substitute this estimate and (2.28) into (2.30),

𝛿𝑚 < (
2𝛿𝜆𝛼

𝜆𝛼 − 𝐿𝑓
+ 2𝛿

𝐿𝑓 − 1) · (
𝐶
2𝛿)

log 𝐿𝑓
𝛼 log 𝜆 +

𝐿𝑏
𝜆 − 𝐿𝑓 (

𝐿𝑓

𝜆 )

𝑠

= 𝐾(𝐿𝑓, 𝛼, 𝜆, 𝐶)𝛿𝛽 +
𝐿𝑏

𝜆 − 𝐿𝑓 (
𝐿𝑓

𝜆 )

𝑠
,

where

𝐾(𝐿𝑓, 𝛼, 𝜆, 𝐶) =
2𝐿𝑓(𝜆𝛼 − 1)

(𝜆𝛼 − 𝐿𝑓)(𝐿𝑓 − 1)
· (

𝐶
2 )

log 𝐿𝑓
𝛼 log 𝜆 .

∎

Note that in the case of a mild skew product the segment 𝐼𝜔,𝑛 depends on all symbols
of the sequence 𝜔, not just 𝜔−𝑛, …, 𝜔−1. So, we will need to change the definitions of the
segment 𝐼𝑣 and of the set 𝐷𝑥,𝑛.

Definition 2.7.6 Given aword 𝑣 = 𝑣−𝑛…𝑣−1|𝑣0…𝑣𝑚, 𝑛, 𝑚>0, denote by 𝐼𝑣 theminimal
segment that includes all the segments 𝐼𝜔,𝑛 for 𝜔 ∈ 𝐶(𝑣),

𝐼𝑣 = [ inf
𝜔∈𝐶(𝑣)

𝑓𝜎−𝑛𝜔,𝑛(0), sup
𝜔∈𝐶(𝑣)

𝑓𝜎−𝑛𝜔,𝑛(1).]

Denote by 𝐷𝑥,𝑛 the set of the words 𝑣 = 𝑣−𝑛…𝑣𝑛 such that 𝑥 ∈ 𝐼𝑣.

Recall that Lemma 2.5.3 followed from the fact that for any word 𝑣 ∈ 𝐷𝑥,𝑛 there exists
a word 𝑢 of the fixed length 𝑁 such that 𝑢𝑣 ∉ 𝐷𝑥,𝑛+𝑁. The following lemma is analogue
of this fact in the case of a mild skew product.
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Lemma 2.7.7 There exists a natural number 𝑁 = 𝑁(𝜆, 𝐿𝑓, 𝐿𝑏) such that for any 𝐶
and any 𝛼, for sufficiently small positive 𝛿 the following holds. Let 𝐺 be a skew product
that satisfies all the assumptions of Theorem 2.7.3. Then for any admissible finite word
𝑣 = 𝑣−𝑚…|𝑣0…𝑣𝑚+𝑁 and any point 𝑥 ∈ 𝐼, there exists a word 𝑢 of length 𝑁 such that the
word 𝑢𝑣 is admissible, and 𝑥 ∉ 𝐼𝑢𝑣.

Proof Choose a small number 𝛿 such that 𝐾(𝐿𝑓, 𝛼, 𝜆, 𝐶)𝛿𝛽 < 0.01 and for any two se-
quences 𝜔 and 𝜂 such that 𝜔0, …, 𝜔9 ∈ 𝑆0 and 𝜂0, …, 𝜂9 ∈ 𝑆1 the 0.01-neighborhoods
of the images of 𝑔𝜔,10 and 𝑔𝜂,10 have empty intersection. Next, let us choose 𝑁 such that
for any sequence that ends with 𝑁 − 10 elements of the step set the second term in the
estimate from Lemma 2.7.5 is less that 0.01,

𝐿𝑏
𝜆 − 𝐿𝑓

· (
𝐿𝑓

𝜆 )

𝑁−10
< 0.01.

Let us prove the lemma for the chosen number 𝑁. First, let us choose a word �̃� that
consists of 𝑁 − 10 elements of the step set, and the word �̃�𝑣 is admissible. Then, due to
Lemma 2.7.5, |𝑓𝜔,−𝑁+10(𝑥) − 𝑓𝜂,−𝑁+10(𝑥)| < 0.02 for any two sequences 𝜔, 𝜂 ∈ 𝐶(�̃�𝑣).
Therefore, the set of possible values of 𝑓𝜔,−𝑁+10(𝑥) is either strictly above the set of pos-
sible images of 𝑔𝜔,10 for 𝜔0, …, 𝜔9 ∈ 𝑆0, or strictly below the set of possible images of
𝑔𝜔,10 for 𝜔0, …, 𝜔9 ∈ 𝑆1. Without loss of generality we can assume that the set of possible
values of 𝑓𝜔,−𝑁+10(𝑥) is strictly above the set of possible images of 𝑔𝜔,10. Then one can
prepend 10 elements of 𝑆0 to the word �̃�, and obtain the word 𝑢 that satisfies the assertion
of the lemma. ∎

Lemma 2.7.8 Let 𝑥 be a point of the segment 𝐼 and 𝑛 be a natural number. Suppose
that 𝑔𝜔,−𝑛(𝑥) ∈ 𝐽. Then 𝑔𝜂,−𝑛−1(𝑥) belongs to 𝐽 either for any 𝜂 ∈ 𝐶∞

−𝑛(𝜔) such that
𝜂−𝑛−1 ∈ 𝑆0, or for any 𝜂 ∈ 𝐶∞

−𝑛(𝜔) such that 𝜂−𝑛−1 ∈ 𝑆1.

Proof Recall that 𝐽 = [𝑎, 𝑏]. Due to Assumption 5 of Theorem 2.7.3, for sufficiently
small 𝛿 > 0 the segments

𝐽0 = [𝑓0(𝑎 + 𝛿) + 𝐾𝛿𝛽 +
𝐿𝑏

𝜆 − 𝐿𝑓
, 𝑓0(𝑏 − 𝛿) − 𝐾𝛿𝛽 −

𝐿𝑏
𝜆 − 𝐿𝑓

],

𝐽1 = [𝑓1(𝑎 + 𝛿) + 𝐾𝛿𝛽 +
𝐿𝑏

𝜆 − 𝐿𝑓
, 𝑓1(𝑏 − 𝛿) − 𝐾𝛿𝛽 −

𝐿𝑏
𝜆 − 𝐿𝑓

],

cover 𝐽.
Therefore, either 𝑔𝜔,−𝑛(𝑥) ∈ 𝐽0 or 𝑔𝜔,−𝑛(𝑥) ∈ 𝐽1. Without loss of generality we can

assume that 𝑔𝜔,−𝑛(𝑥) ∈ 𝐽0. Let 𝜂 be a sequence such that 𝜂 coincides with 𝜔 on the ray
[−𝑛, +∞) and 𝜂−𝑛−1 ∈ 𝑆0. Let us prove that 𝑔𝜂,−𝑛−1(𝑥) ∈ 𝐽. Since 𝜂 ∈ 𝐶∞

−𝑛(𝜔), due to
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Lemma 2.7.5 for 𝑠 = 0 the distance between the preimages 𝑔𝜔,−𝑛(𝑥) and 𝑔𝜂,−𝑛(𝑥) is at most
𝐾𝛿𝛽 + 𝐿𝑏

𝜆−𝐿𝑓
. Therefore,

𝑔𝜂,−𝑛(𝑥) ∈ [𝑓0(𝑎 + 𝛿), 𝑓0(𝑏 − 𝛿)] ⊂ [𝑔𝜎−𝑛−1𝜂(𝑎), 𝑔𝜎−𝑛−1𝜂(𝑏)].

The latter inclusion holds because ‖𝑔−1
𝜎−𝑛−1𝜂 − 𝑓−1

0 ‖𝐶0 < 𝛿.
Finally, 𝑔𝜂,−𝑛(𝑥) ∈ [𝑔𝜎−𝑛−1𝜂(𝑎), 𝑔𝜎−𝑛−1𝜂(𝑏)], therefore 𝑔𝜂,−𝑛−1(𝑥) ∈ [𝑎, 𝑏] = 𝐽. ∎

Lemma 2.7.9 Suppose that for any 𝑥 ∈ 𝐼 the cardinality of the set 𝐷𝑥,𝑛 grows exponen-
tially slower than the cardinality of the set 𝐴𝑛 of all admissible words 𝑣−𝑛…𝑣𝑛,

||𝐷𝑥,𝑛
||

||𝐴𝑛||
< (1 − )𝑛.

Then the Hausdorff dimension of the maximal attractor is less than the Hausdorff dimen-
sion of the phase space. More precisely,

dim𝐻 𝐴𝑚𝑎𝑥 < dim𝐻(Σ𝑘
𝐴 × 𝐼) − min(1, log𝜆

1
1 −

).

Proof Due to the definitions of the set 𝐷𝑥,𝑛 and of the segment 𝐼𝑣, the image of the map
𝐹𝑛 is included into the union of the Cartesian products 𝐶𝑛

−𝑛(𝑣) × 𝐼𝑣 for all words 𝑣 ∈ 𝐷𝑥,𝑛.
Hence, the image 𝐹𝑛(𝑋) can be covered by at most

𝑁(𝑛) = ∑
𝑣∈𝐴𝑛

⌈𝜆𝑛|𝐼𝑣|⌉ ⩽ 𝜆𝑛
∑

𝑣∈𝐴𝑛

|𝐼𝑣| + ||𝐴𝑛||

balls of radii 𝜆−𝑛. Estimate the first summand.

𝜆𝑛
∑

𝑣∈𝐴𝑛

|𝐼𝑣| = 𝜆𝑛
∫

𝐼

||𝐷𝑥,𝑛
|| 𝑑𝑥 ⩽ 𝜆𝑛(1 − )𝑛 ||𝐴𝑛|| .

The growth rate of the sum 𝑁(𝑛) is the maximum of the rates of the summands,

dim𝐻(𝐴𝑚𝑎𝑥) ⩽ lim
𝑛→∞

log𝜆 𝑁(𝑛)
𝑛

⩽ max
(

lim
𝑛→∞

1
𝑛

log𝜆(𝜆𝑛(1 − )𝑛 ||𝐴𝑛||), lim
𝑛→∞

log𝜆 ||𝐴𝑛||
𝑛 )

= max (dim𝐻(Σ𝑘
𝐴) + 1 + log𝜆(1 − ), dim𝐻(Σ𝑘

𝐴))

= dim𝐻(Σ𝑘
𝐴 × 𝐼) − min(1, log𝜆

1
1 −

).
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∎

2.7.2 Bony attractor

As in the previous cases (see Subsections 2.4.4 and 2.5.2), consider a segment 𝐼 such
that 𝑓2(𝐼) ⊃ 𝐼. Then for sufficiently small values of 𝛿 and any sequence 𝜔 such that
𝜔0 ∈ 𝑆2, the image 𝑔𝜔(𝐼) includes the segment 𝐼. Therefore, for any sequence 𝜔 such
that 𝜔−𝑘 ∈ 𝑆2 for 𝑘 > 𝑛, the set 𝐼𝜔 includes the non-trivial interval 𝑓𝜎−𝑛𝜔,𝑛(𝐼). Due to
Assumption 1 of Theorem 2.7.3, the set of sequences of this form is dense in Σ𝑘

𝐴 and has
the cardinality of ℝ.

2.7.3 Hausdorff dimension and measure

Let 𝑁 be the number from Lemma 2.7.7. Let 𝛿 be so small that we can apply this
lemma.

Let 𝐴𝑖,𝑗
𝑛 be the set of admissible words 𝑣 = 𝑣−𝑛…𝑣𝑛 such that 𝑣−𝑛 = 𝑖 and 𝑣𝑛 = 𝑗.

Denote by 𝐷𝑖,𝑗
𝑥,𝑛 the intersection 𝐷𝑥,𝑛 ∩ 𝐴𝑖,𝑗

𝑛 . Clearly,

||𝐴𝑛|| = ∑
𝑖.𝑗

||𝐴
𝑖,𝑗
𝑛

|| , ||𝐷𝑥,𝑛
|| = ∑

𝑖,𝑗

|
|𝐷

𝑖.𝑗
𝑥,𝑛

|
| .

Due to Lemma 2.7.9, it is sufficient to show that the sequence ||𝐷𝑥,𝑛
|| grows exponen-

tially slower than the sequence ||𝐴𝑛||. Obviously, this would follow from the fact that some
other linear combination of the numbers |

|𝐷
𝑖,𝑗
𝑥,𝑛

|
| with positive coefficients grows exponen-

tially slower than the linear combination of the numbers ||𝐴
𝑖,𝑗
𝑛

|| with the same coefficients.
Consider two matrix sequences, (𝒜𝑛)𝑖𝑗 = ||𝐴

𝑖,𝑗
𝑛

|| and (𝒟𝑥,𝑛)𝑖𝑗 = |
|𝐷

𝑖,𝑗
𝑥,𝑛

|
|. Let 𝐴𝑡𝑜𝑝 be the

topological transition matrix,

(𝐴𝑡𝑜𝑝)𝑖𝑗 = {
0, if 𝐴𝑖𝑗 = 0;
1, else.

It is easy to check that 𝒜𝑛 = 𝐴2𝑛+1
𝑡𝑜𝑝 .

Let us estimate the elements of the matrix 𝒟𝑥,𝑛+𝑁 in terms of the matrices 𝒟𝑥,𝑛 and
𝐴𝑡𝑜𝑝. For any word 𝑣 ∈ 𝐷𝑥,𝑛+𝑁 the word 𝑣−𝑛…𝑣𝑛 belongs to the set 𝐷𝑥,𝑛. Therefore,

(𝒟𝑥,𝑛)𝑖𝑗 ⩽ (𝐴𝑁
𝑡𝑜𝑝𝒟𝑥,𝑛𝐴𝑁

𝑡𝑜𝑝)𝑖𝑗.

Denote by ℬ𝑥,𝑛 the difference between these two matrices,
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ℬ𝑥,𝑛 := 𝐴𝑁
𝑡𝑜𝑝𝒟𝑥,𝑛𝐴𝑁

𝑡𝑜𝑝 − 𝒟𝑥,𝑛.

The element (ℬ𝑥,𝑛)𝑖𝑗 is the number of the admissible words 𝑣 = 𝑣−𝑛−𝑁…𝑣𝑛+𝑁 such
that 𝑣−𝑛…𝑣𝑛 ∈ 𝐷𝑥,𝑛, 𝑣 ∉ 𝐷𝑥,𝑛+𝑁, 𝑣−𝑛−𝑁 = 𝑖 and 𝑣𝑛+𝑁 = 𝑗. Due to Lemma 2.7.7, the total
number of the admissible words 𝑣 = 𝑣−𝑛−𝑁…𝑣𝑛+𝑁 ∉ 𝐷𝑥,𝑛+𝑁 such that 𝑣−𝑛…𝑣𝑛 ∈ 𝐷𝑥,𝑛
is at least ||𝐷𝑥,𝑛

||,

∑
𝑖,𝑗

(ℬ𝑥,𝑛)𝑖𝑗 ⩾ ∑
𝑖,𝑗

(𝒟𝑥,𝑛)𝑖𝑗. (2.31)

Due to Perron--Frobenius Theorem, matrix 𝐴𝑡𝑜𝑝 has exactly one left eigenvector 𝒶
with positive coordinates and exactly one right eigenvector 𝒷 with positive coordinates,

𝒶𝐴𝑡𝑜𝑝 = 𝜆𝑃𝒶, 𝐴𝑡𝑜𝑝𝒷 = 𝜆𝑃𝒷.

Let us study the asymptotic behaviour of the sequences 𝒶𝒜𝑛𝒷 and 𝒶𝒟𝑥,𝑛𝒷. The first
sequence is just a geometric progression,

𝒶𝒜𝑛𝒷 = 𝒶𝐴2𝑛+1
𝑡𝑜𝑝 𝒷 = 𝜆2𝑛+1

𝑃 𝒶𝒷.

Let us estimate the second sequence,

𝒶𝒟𝑥,𝑛+𝑁𝒷 = 𝒶𝐴𝑁
𝑡𝑜𝑝𝒟𝑥,𝑛𝐴𝑁

𝑡𝑜𝑝𝒷 − 𝒶ℬ𝑥,𝑛𝒷

= 𝜆2𝑁
𝑃 𝒶𝒟𝑥,𝑛𝒷 − 𝒶ℬ𝑥,𝑛𝒷.

Due to (2.31),

𝒶ℬ𝑥,𝑛𝒷 ⩾ 𝒶𝒟𝑥,𝑛𝒷,

where depends only on 𝒶 and 𝒷, hence depends only on the matrix 𝐴.
Therefore,

𝒶𝒟𝑥,𝑛+𝑁𝒷 ⩽ 𝜆2𝑁
𝑃 𝒶𝒟𝑥,𝑛𝒷 − 𝒶ℬ𝑥,𝑛𝒷 ⩽ (𝜆2𝑁

𝑃 − )𝒶𝒟𝑥,𝑛𝒷.

Thus the sequence𝒶𝒟𝑥,𝑛𝒷 grows exponentially slower than the sequence 𝑎𝒜𝑛𝑏. Hence,
the sequence ||𝐷𝑥,𝑛

|| grows exponentially slower than the number of admissible words of
length 2𝑛 + 1. Now Lemma 2.7.9 implies that the Hausdorff dimension of the maximal
attractor is less than the Hausdorff dimension of the phase space.

Note that the estimate on the Hausdorff dimension of the maximal attractor depends
only on the matrix 𝐴𝑡𝑜𝑝 and the number 𝑁 (which depends on 𝐿𝑓, 𝐿𝑏, 𝜆 and 𝑘). In partic-
ular, the estimate does not depend on 𝛼.
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2.7.4 Density of the graph

Take a point 𝑝 = (𝜔, 𝑥) of the maximal attractor, and its standard neighborhood 𝑈 =
𝐶𝑁

−𝑁(𝜔) × (𝑥 − ,̃ 𝑥 + )̃.
First, let us prove that for some 𝑛 > 𝑁 the preimage 𝐺−𝑛({𝜔} × (𝑥 − ,̃ 𝑥 + )̃), 𝑛 > 𝑁

intersects the strip Σ𝑘 × 𝐽. Indeed, otherwise due to Assumption 5 of Theorem 2.7.3 the
lengths of these preimages would exponentially grow as 𝑛 → ∞ which is impossible. Let
𝑚 > 𝑁 be a number such that the preimage 𝐺−𝑛({𝜔} × (𝑥 − ,̃ 𝑥 + )̃) intersects the strip
Σ𝑘 × 𝐽. Let 𝑦 ∈ (𝑥 − ,̃ 𝑥 + )̃ be a point such that 𝑔𝜔,−𝑚(𝑦) ∈ 𝐽.

Applying Lemma 2.7.8 infinitely many times, one can easily show that there exists an
infinite sequence 𝜂 = …𝜂−𝑚−1 such that 𝜂𝑖 ∈ 𝑆0 ∪ 𝑆1 for any 𝑖 and 𝑦 ∈ 𝐼𝜂𝜔−𝑚…|𝜔0….

Recall that the maps 𝑓0 and 𝑓1 uniformly contract, hence 𝐼𝜂𝜔−𝑚…|𝜔0… = {𝑦}, therefore
the point (𝜂𝜔−𝑛…|𝜔0…, 𝑦) belongs to the graph Γ.

Finally, in any neighborhood of a point 𝑝 ∈ 𝐴𝑚𝑎𝑥 there exists a point of the graph Γ,
hence Γ is dense in 𝐴𝑚𝑎𝑥.

2.7.5 Coincidence of attractors

Let us prove that 𝐴𝑚𝑎𝑥 = 𝐴𝑀.
Indeed, the likely limit set of a skew product intersects a fiber {𝜔} × 𝐼 whenever 𝜔

belongs to the likely limit set of the map in the base. The likely limit set of a Markov shift
is the whole phase space, hence the likely limit set of the skew product 𝐺 intersects each
fiber {𝜔} × 𝐼.

On the other hand, the maximal attractor includes the likely limit set, therefore if (𝜔, 𝑥)
is a point of the graph Γ, then (𝜔, 𝑥) ∈ 𝐴𝑀. But the graph Γ is dense in the maximal
attractor, therefore 𝐴𝑀 = 𝐴𝑚𝑎𝑥.

2.8 Open set of smooth examples

In this section we will prove Theorem 2.2.3.
In Subsection 2.8.1 we will choose a linear Anosov diffeomorphism 𝑇 and construct a

skew product ℱ over 𝑇 with fiber 𝐼 = [0, 1] such that the corresponding skew product 𝐹
over a Markov shift satisfies all the assumptions of Theorem 2.7.3. In Subsection 2.8.2 we
will use Gorodetski--Ilyashenko--Negut Theorem to show that any smooth map 𝐶2-close
to ℱ has a bony attractor without holes.

Finally, in Subsection 2.8.3 we will attach another strip 𝕋2 × 𝐼′ and extend ℱ up to a
skew product on the three-torus so that the restrictions of the fiber maps to the attached
strip will uniformly expand. Then the original strip 𝕋2 × 𝐼 will become an absorbing
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domain, and the results of Subsection 2.8.2 will imply that any diffeomorphism of the
three-torus sufficiently close to the extended ℱ in 𝐶2 metric has a bony attractor without
holes.

2.8.1 Smooth example with fiber [0, 1]

Our example will be a skew product over the linear Anosov diffeomorphism given by
the matrix

𝑇𝑞 = (
𝑞 𝑞 + 1

𝑞 − 1 𝑞 ), 𝑞 = 1000.

One can easily check that the eigenvalues of this matrix are 𝜆 = 𝑞 + √𝑞2 − 1 and
𝜆−1 = 𝑞 − √𝑞2 − 1.

For any 𝑞 > 10 we will construct a skew product over 𝑇𝑞 with fiber 𝐼 that satisfies all
assumptions of Theorem 2.7.3 but Assumption 5. In order to satisfy this assumption, we
will need to take 𝑞 ⩾ 1000. Probably the picture is the same for any 𝑞 > 10, but we cannot
prove it yet.

Let us describe the Markov partition of the torus that we will use in our proof. This
construction was introduced in [1]. For a more detailed description see [16]. First, let us
split the torus into two parallelograms 𝑄1 and 𝑄2 with sides parallel to the eigenvectors
of 𝑇𝑞 as shown in Figure 2.7 (a). This is a pre-markov partition. Then take the preimage
of this partition under 𝑇𝑞 (see Figure 2.7 (b)), and draw both the original partition and
its preimage under 𝑇𝑞 on the same picture (see Figure 2.7 (c)). One can show that the
intersections of the parallelograms of the initial pre-Markov partition with their preimages
under 𝑇𝑞 form a Markov partition for 𝑇𝑞.
Formally, the parallelograms of the Markov partition are closures of the connected com-
ponents of the intersections 𝑄𝑖𝑗 = (int 𝑄𝑖) ∩ 𝑇−1

𝑞 (int 𝑄𝑗). We will say that a parallelogram
𝑄 of the Markov partition has type (𝑖, 𝑗) if 𝑄 ⊂ 𝑄𝑖𝑗. One can show that the following
holds.

• There are (𝑇𝑞)𝑖𝑗 parallelograms of type (𝑖, 𝑗).
• Let 𝑄 be a parallelogram of type (𝑖, 𝑗), and 𝑄′ be a parallelogram of type (𝑖′, 𝑗′). Then

the intersection 𝑇𝑞(int 𝑄) ∩ int 𝑄′ is not empty if and only if 𝑗 = 𝑖′.

Therefore, the topological transition matrix for theMarkov chain corresponding to this
Markov partition is
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(a) Pre-Markov partition (b) Preimage of the pre-Markov partition

(c) Markov partition

Figure 2.7 Pre-Markov and Markov partition for 𝑞 = 3
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⎛
⎜
⎜
⎜
⎜
⎝

1𝑞×𝑞 1𝑞×(𝑞+1) 0𝑞×(𝑞−1) 0𝑞×𝑞
0(𝑞+1)×𝑞 0(𝑞+1)×(𝑞+1) 1(𝑞+1)×(𝑞−1) 1(𝑞+1)×𝑞
1(𝑞−1)×𝑞 1(𝑞−1)×(𝑞+1) 0(𝑞−1)×(𝑞−1) 0(𝑞−1)×𝑞

0𝑞×𝑞 0𝑞×(𝑞+1) 1𝑞×(𝑞−1) 1𝑞×𝑞

⎞
⎟
⎟
⎟
⎟
⎠

, (2.32)

where 0𝑎×𝑏 (resp., 1𝑎×𝑏) is the 𝑎 × 𝑏 matrix consisting of zeroes (resp., ones). The
correspondence between the rows (columns) of this matrix and the types of parallelograms
is shown in Table 2.2.

Rows (columns) range Type of parallelograms
1 to 𝑞 (first 𝑞) (1, 1)

𝑞 + 1 to 2𝑞 + 1 (next 𝑞 + 1) (1, 2)
2𝑞 + 2 to 3𝑞 (next 𝑞 − 1) (2, 1)

3𝑞 + 1 to 4𝑞 (last 𝑞) (2, 2)

Table 2.2 The correspondence between rows (columns)
of the topological transition matrix (2.32) and parallelo-
grams of the Markov partition

Let us choose six parallelograms 𝑅𝑖𝑗 of the Markov partition, 𝑖 = 0, 1, 2, 𝑗 = 1, 2 such
that

• 𝑅𝑖𝑗 ⊂ 𝑄𝑗, i. e. 𝑅𝑖𝑗 is either of type (1, 𝑗), or of type (2, 𝑗);
• the distance between 𝑅𝑖1𝑗1

and 𝑅𝑖2𝑗2
is at least 0.1 provided that 𝑖1 ≠ 𝑖2.

This is possible for, e. g., 𝑞 > 100. Choose the fiber maps 𝑓𝑏 to be 𝑓𝑖 for 𝑏 ∈ 𝑅𝑖1 ∪
𝑅𝑖2, and extend this skew product up to a skew product over 𝑇𝑞 with Lipschitz constants
𝐿𝑏, 𝐿𝑓 <10 such that all fiber maps are linear combinations of 𝑓𝑖 with positive coefficients,
and the sum of the coefficients equals one.

Let us show that the constructed skew product satisfies all assumptions of Theorem 2.7.3
for sufficiently large values of 𝑞 (say, for 𝑞 > 1000). First of all, the square of the transition
matrix has no zero elements, hence the transition matrix is irreducible. Next, 𝐴11 ≠ 0,
hence 𝐴 is an aperiodic matrix. Now let us pass to enumerated conditions of Theo-
rem 2.7.3.

• For any symbol 𝑣0 from the alphabet {0, …, 𝑘 − 1}, and 𝑖 = 0, 1, 2 there exists a
symbol 𝑢0 such that 𝑢0𝑣0 is an admissible word, 𝑢0 belongs to the step set of 𝐹, and the
corresponding step fiber map 𝑓𝑢0

is 𝑓𝑖.
Let (𝑖, 𝑗) be the type of the parallelogram corresponding to 𝑣0. Then it is sufficient

to take 𝑢0 to be the symbol corresponding to the parallelogram 𝑅𝑖𝑖.
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• Both fiber maps 𝑓𝜔 and the inverse maps 𝑓−1
𝜔 are bi-Lipschitz with constant 𝐿𝑓 .

This property holds due to the choice of fiber maps.
• The fiber maps 𝑓𝜔 and the inverse maps 𝑓−1

𝜔 are Lipschitz on 𝜔 with constant 𝐿𝑏 .
This property holds due to the choice of fiber maps as well.

• The map 𝐹 is partially hyperbolic with vertical central fibration. Moreover,

𝐿𝑓 < 𝜆 and 𝐿𝑓 < 𝜆𝛼.

The first inequality holds since 𝐿𝑓 < 10 < 𝜆. The second inequality holds for 𝛼
sufficiently close to one.

• There exists an interval 𝐽 = [𝑎, 𝑏] ⊂ 𝐼 such that
− if 𝑓𝜔(𝑥) ∈ 𝐼 ∖ 𝐽, then 𝑓′

𝜔(𝑥) < const <1;
− the open intervals

(𝑓0(𝑎) +
𝐿𝑏

𝜆 − 𝐿𝑓
, 𝑓0(𝑏) −

𝐿𝑏
𝜆 − 𝐿𝑓 ) and (𝑓1(𝑎) +

𝐿𝑏
𝜆 − 𝐿𝑓

, 𝑓1(𝑏) −
𝐿𝑏

𝜆 − 𝐿𝑓 )

cover 𝐽.
Take 𝐽 = [0.2, 0.8]. The first property holds for the fiber maps 𝑓𝑖, hence it holds

for all fiber maps as well.
Recall that 𝐿𝑏, 𝐿𝑓 < 10 and 𝜆 > 2𝑞 − 1. Thus for 𝑞 > 1000 the fraction 𝐿𝑏

𝜆−𝐿𝑓
is less

than 1
190 . Substituting this estimate, we obtain that the second property holds as well.

2.8.2 Perturbations

Consider a smooth map 𝒢∶ 𝕋2 → 𝕋2 such that 𝑑𝐶1(ℱ, 𝒢) < 𝛿, where a small positive
number 𝛿 will be chosen later. Due to Ilyashenko--Negut Theorem, this map is conjugated
to a Hölder continuous skew product �̃� over 𝑇𝑞 with smooth fiber maps. Due to Hirsch--
Pugh--Shub Theorem, the fiber maps of this skew product are 𝐶1-close to the fiber maps of
themap ℱ. Let 𝐺∶ Σ𝑘

𝐴×𝐼 → Σ𝑘
𝐴×𝐼 be the skew product over aMarkov shift 𝜎𝐴∶ Σ𝑘

𝐴 → Σ𝑘
𝐴

semi-conjugated to the diffeomorphism 𝒢.
Note that Conditions 1 and 2 of Definition 2.2.1 and Condition 1 of Definition 2.2.2 are

purely topological, hence they survive under the continuous conjugation𝐻 from Ilyashenko--
Negut Theorem.

Let us show that Condition 3 of Definition 2.2.1 holds for sufficiently small 𝛿 > 0. Let
𝑑 = 𝑑(𝐿𝑓, 𝐿𝑏, 𝑇) be the estimate for the Hausdorff dimension of the maximal attractor
obtained in Subsection 2.7.3. Let us choose a positive 𝛿 such that the conjugation 𝐻
from Ilyashenko--Negut Theorem is Hölder continuous with exponent 𝛼 > 𝑑/3. Then the
Hausdorff dimension of the maximal attractor of 𝒢 is less than 𝑑/𝛼 < 3.
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The only remaining part is the coincidence of the maximal attractor and the likely limit
set. We will need the following lemma.

Lemma 2.8.1 Consider a skew product ℱ over a linear Anosov diffeomorphism 𝑇 of
the two-torus,

𝑋 = 𝕋2 × 𝑀, ℱ∶ 𝑋 → 𝑋, (𝑏, 𝑚) ↦ (𝑇𝑏, 𝑓𝑏(𝑚)),

where 𝑀 is a compact manifold. Suppose that the map ℱ is partially hyperbolic with
vertical central fibration {𝑏} × 𝑀. Then there exists 𝛿 > 0 such that for any smooth map
𝒢, 𝑑𝐶2(ℱ, 𝒢) < 𝛿 the likely limit set of 𝒢 with respect to the Lebesgue measure 𝑚3 on 𝑋
intersects each central fiber of the map 𝒢.

A very similar result was proved (though not formulated as an isolated statement) in
[2, p. 215]. I would like to thank V. Kleptsyn who pointed me to this book. The following
proof essentially repeats the last paragraph of the proof of Proposition 11.1 in this book,
providing much more details.

Proof Choose 𝛿 such that for any smooth map 𝒢, 𝑑𝐶2(ℱ, 𝒢) < 𝛿 the dominated splitting
condition holds, and the strongly unstable bundle of the original map ℱ belongs to the
strongly unstable cone of the perturbed map 𝒢.

Suppose that there exists a 𝐶2-smooth perturbation 𝒢, 𝑑𝐶2(ℱ, 𝒢)<𝛿 and a fiber of the
central fibration of 𝒢 such that the likely limit set 𝐴𝑀(𝒢) does not intersect this fiber. Then
the likely limit set of the map 𝒢 does not intersect the saturation 𝑈 of a small neighborhood
of this fiber by the fibers of the central fibration.

Choose an open set 𝑈 ⋐ 𝑈, and consider the set 𝑉 of points 𝑝 ∈ 𝕋2 × 𝑀 such that
𝒢𝑛(𝑝) ∉ 𝑈 for all 𝑛 ⩾ 0,

𝑉 = {𝑝 ∈ 𝑋 || ∀𝑛 ⩾ 0 𝒢𝑛(𝑝) ∉ 𝑈} = ⋂
𝑛⩾0

𝒢−𝑛(𝑋 ∖ 𝑈).

The set 𝑉 is the intersection of a family of closed sets, hence 𝑉 is a closed set as well.
The union of all preimages 𝒢−𝑛(𝑉) includes the set of points 𝑝 such that the 𝜔-limit set of
𝑝 does not intersect 𝑈,

⋃
𝑛⩾0

𝒢−𝑛(𝑉) ⊃ {𝑝 ∈ 𝑋 |
| (the 𝜔-limit set of 𝑝) ∩ 𝑈 = ∅}.

Indeed, if 𝑝 does not belong to the union ⋃𝑛⩾0 𝒢−𝑛(𝑉), then 𝒢𝑛(𝑝) ∈ 𝑈 for infinitely
many 𝑛 ∈ ℕ. Thus the orbit of the point 𝑝 has a limit point in Cl 𝑈 ⊂ 𝑈, hence the 𝜔-limit
set of the point 𝑝 intersects 𝑈.
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Recall that the likely limit set does not intersect 𝑈, hence the set of points 𝑝 such that
the 𝜔-limit set of 𝑝 does not intersect 𝑈 has a full Lebesgue measure. Therefore, the union
of all preimages 𝒢−𝑛(𝑉) has a full Lebesgue measure as well. Thus, the set 𝑉 has a positive
Lebesgue measure.

Due to Fubini Theorem, there exists a point 𝑚0 ∈ 𝑀 and an unstable leaf �̃�∶ ℝ → 𝕋2

of the linear Anosov diffeomorphism 𝑇 such that the intersection 𝑉 ∩ (�̃�(ℝ) × {𝑚0}) has a
positive one-dimensional Lebesguemeasure. Denote by 𝛾 the curve 𝛾(𝑡) = (�̃�(𝑡), 𝑚0). Then
the set {𝑡 ∈ ℝ | 𝛾(𝑡) ∈ 𝑉} has a positive Lebesgue measure. Without loss of generality, we
can assume that zero is a Lebesgue point of this set,

lim
→0

meas(𝛾−1(𝑉) ∩ (− , ))
2

= 1.

Fix a small positive number > 0, and choose an interval (− ′, ′) so that

meas(𝛾−1(𝑉) ∩ (− ′, ′)) > 2 ′(1 − ).

Let 𝑛( ′) be the smallest natural number such that the image 𝛾 ′ of the curve 𝛾|(− ′, ′)

under the map 𝒢𝑛( ′) is longer than one. Denjoy Distortion Lemma implies that there exists
𝐶 = 𝐶(ℱ, 𝛿) such that

max
𝑡∈(− ′, ′)

‖‖(𝒢𝑛( ′))′(𝛾(𝑡))‖‖ < 𝐶(ℱ, 𝛿) min
𝑡∈(− ′, ′)

‖‖(𝒢𝑛( ′))′(𝛾(𝑡))‖‖

Therefore,

meas1(𝛾 ′(− ′, ′) ∩ 𝑉) > (1 − 𝐶 ) meas1(𝛾 ′(− ′, ′)). (2.33)

Consider the family of the curves 𝛾 ′ = 𝒢𝑛( ′)(𝛾(− ′, ′)) for small positive numbers
′. Due to Arzelà--Ascoli Theorem, this family has a limit point in the space of 𝐶1-smooth

curves. Denote by 𝛾0 the limit curve parametrized by arc length. Inequality (2.33) implies
that the intersection Im 𝛾0 ∩ 𝑉 has a full measure in Im 𝛾0. Recall that 𝑉 is a closed set,
hence Im 𝛾0 ⊂ 𝑉.

Due toHirsch--Pugh--Shub andGorodetski Theorems, there exists a projection𝜋∶ 𝑋 → 𝕋2

such that the following diagram commutes.

𝑋 𝑋

𝕋2 𝕋2

𝒢

𝜋 𝜋

𝑇
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The image 𝜋∘𝛾0 of the curve 𝛾0 under the projection 𝜋 is a smooth curve in 𝕋2 such that
the images of this curve under the iterations of 𝑇 do not intersect the open set 𝜋𝑈 which is
impossible. This contradiction proves the lemma. ∎

Now it is easy to prove that the maximal attractor coincides with the likely limit set.
Indeed, the likely limit set of the perturbed map 𝒢 intersects each fiber of the central
fibration of 𝒢. On the other hand, the maximal attractor includes the likely limit set.
Hence, the likely limit set includes the graph part Γ of the maximal attractor. The graph
part Γ is dense in the maximal attractor, therefore the likely limit set coincides with the
maximal attractor.

Finally, the map 𝒢 has a bony attractor without holes.

2.8.3 From segment to a circle

So, we have constructed a skew product ℱ over the linear Anosov diffeomorphism
with segment as a fiber such that any smooth map 𝒢 sufficiently close to ℱ has a bony
attractor without holes. Consider a strip 𝑌 = 𝕋2 × 𝐼. Let us glue together our phase
space 𝑋 and this strip into three-torus and extend the map ℱ to the whole torus using
linear expanding maps on the attached strip 𝑌. Then ℱ(𝑋) ⊂ 𝑋, hence 𝒢(𝑋) ⊂ 𝑋 for
𝒢 sufficiently close to ℱ, thus the maximal attractor of the initial system 𝒢|𝑋 is a locally
maximal attractor of the new system, hence the new system has bony attractor without
holes as well.

2.9 Further research

2.9.1 Skew products with fiber [0, 1]

In Section 2.7 we constructed a non-empty open set of Hölder skew products such that
any system from this set has a bony attractor without holes.

One can ask which properties from Definition 2.4.2 hold for a typical skew product
over a Markov shift. Actually, there are two series of questions.

• What properties has a typical step skew product over a Markov shift?
• What properties has a typical mild skew product over a Markov shift?

For mild skew products, it is natural to consider only Hölder continuous skew products
with smooth fiber maps that satisfy the inequality 𝐿𝑓 < 𝜆𝛼 (see Theorem 2.7.3).

V. Kleptsyn and D. Volk [22] described some properties of a typical (step, Hölder
continuous) skew product.
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Theorem 2.9.1 (V. Kleptsyn, D. Volk, [22]) Let 𝐹∶ Σ𝑘
𝐴 × 𝐼 → Σ𝑘

𝐴 × 𝐼 be a Hölder skew
product over a Markov shift 𝜎𝐴. Suppose that 𝐹 satisfies the following conditions (cf. the-
orem 2.7.3).

• The fiber maps 𝑥 ↦ 𝑓𝜔(𝑥) and their inverse maps are 𝐶1 smooth on 𝑥 with Lipschitz
constant 𝐿.

• The maps Σ𝑘
𝐴 → 𝐶1(𝐼), 𝜔 ↦ 𝑓𝜔 and 𝜔 ↦ 𝑓−1

𝜔 are Hölder continuous on 𝜔 with
Hölder exponent 𝛼.

• 𝜆𝛼 > 𝐿.

Then there exists a finite collection of strips 𝑈𝑖 = {(𝜔, 𝑥) || 𝑔
−
𝑖 (𝜔) ⩽ 𝑥 ⩽ 𝑔+

𝑖 (𝜔)}, 𝑔±
𝑖 ∶ Σ𝑘

𝐴 →
𝐼, such that the following holds.

• Each strip 𝑈𝑖 is absorbing either for 𝐹 or for 𝐹−1.
• The realms of attraction10 of the strips 𝑈𝑖 (with respect to 𝐹 or 𝐹−1) cover Σ𝑘

𝐴 except
for a closed subset whose projection to Σ𝑘

𝐴 has measure zero.
• The maximal attractor10of each strip 𝑈𝑖 is the union of the graph of a continuous

function 𝜑𝑖∶ Ω𝑖 → 𝐼, Ω𝑖 ⊂ Σ𝑘
𝐴, 𝜇𝐴(Ω𝑖) = 1, and a subset of (Σ𝑘

𝐴 ∖ Ω𝑖) × 𝐼.
• Let 𝑚 be any invariant ergodic measure on Σ𝑘

𝐴 × 𝐼 such that 𝑚(𝑈 × 𝐼) = 𝜇𝐴(𝑈) for
any 𝜇𝐴-measurable set 𝑈 ⊂ Σ𝑘

𝐴. Then there exists a strip 𝑈𝑖 from the collection {𝑈𝑖}
whose maximal attractor includes supp 𝑚, and 𝑚 is the SRB-measure for 𝑈𝑖.

• The Lyapunov exponent in the vertical direction of each invariant ergodic measure is
not equal to zero.

So, this theorem basically states that the phase space of a typical skew product over a
Markov shift with fiber 𝐼 can be splitted into a finite collection of domains 𝑈𝑖 such that
for any domain 𝑈𝑖 either the restriction 𝐹|𝑈𝑖

, or the restriction 𝐹−1|𝑈𝑖
has an attractor ‘not

too worse' than a bony attractor.
For example, this theorem implies that the likely limit set of a typical skew product

over a Markov shift with fiber 𝐼 has measure zero. Though this theorem provides us a lot
of information on the limit behaviour of a typical skew product over a Markov shift, there
are still some open questions.

Question 2.9.2 Is the likely limit set of a typical (step, Hölder continuous) skew product
over a Markov shift Lyapunov stable?

Question 2.9.3 Does the likely limit set of a typical (step, Hölder continuous) skew
product over a Markov shift intersect each vertical fiber on a finite union of segments and
points?

10 With respect to 𝐹 if 𝑈𝑖 is an absorbing domain for 𝐹, and with respect to 𝐹−1 otherwise.
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2.9.2 Multi-dimensional bones

Another possible direction of further research is to provide a reasonable definition of
a bony attractor with multi-dimensional bones, and study the properties of such attrac-
tors. In particular, it would be interesting to test whether systems with bony attractors
are counter-examples to some well-known open problems. I will just list some possible
questions.

• Does there exist an open set of diffeomorphisms having a bony attractor with multi-di-
mensional bones?

• Does there exist an open set of diffeomorphisms having a bony attractor with holes
(e. g., the likely limit set is asymptotically unstable)?

• Does there exist an open set of diffeomorphisms having a thick attractor (i. e., 0 <
𝜇(𝐴𝑀) < 𝜇(𝑋), where 𝑋 is the phase space)?
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3 Billiards

This chapter is a joint work with A. Glutsyuk.

3.1 Introduction

3.1.1 Main results

Figure 3.1 A couple of
billiard trajectories

Given a domain Ω ⊂ ℝ𝑚 with (piecewise) smooth bound-
ary, consider the billiard dynamical system which describes
the trajectories of a particle (a billiard ball) moving inside
this domain. The ball moves along straight lines inside Ω
and reflects against the boundary of Ω by the standard re-
flection law.

Formally, the phase space of this system is the set of
pairs (𝑥, 𝑣), where 𝑥 ∈ 𝜕Ω is a point of reflection and 𝑣,
‖𝑣‖ = 1 is velocity of the ball at this point (a unit vector
directed towards the interior of the domain Ω). The billiard
map sends a pair (𝑥, 𝑣) to the pair (𝑥′, 𝑣′), where 𝑥′ is the first
point along the ray {𝑥 + 𝑡𝑣 | 𝑡 ∈ (0, +∞)} that belongs to the
border 𝜕Ω and 𝑣′ is the speed of the ball after reflection.

This chapter is devoted to a particular case of the following long-standing problem.

Conjecture 3.1.1 (V. Ivrii, 1978) Given a domain in the Euclidean space with suffi-
ciently smooth boundary, the set of periodic orbits of the corresponding billiard has mea-
sure zero.

More precisely, we study the set of pairs (𝑥, 𝑣) such that the orbit of (𝑥, 𝑣) under the
billiard map is finite.

Clearly, it is sufficient to prove that for any 𝑘 the set Per𝑘 of 𝑘-gonal orbits has measure
zero. For 𝑘 = 2, this statement is trivial. For triangular trajectories in a planar billiard
(i. e., a billiard in Ω ⊂ ℝ2), this statement was proved by M. Rychlik [21]. Later Rychlik's
result was generalized by Ya. Vorobets [23] for higher dimensional billiards.

We will show that the set of quadrilateral periodic orbits of a planar billiard has mea-
sure zero.
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Theorem 3.1.2 There exists a natural number 𝑟 such that for any planar billiard with
piecewise 𝐶𝑟 smooth boundary, the set Per4 has measure 0.

In what follows, 𝜇 denotes the Lebesgue measure on the billiard phase space (i. e., the
set of pairs (𝑥, 𝑣) described above).

Obviously, Theorem 3.1.2 is implied by the two following theorems.

Theorem 3.1.3 Suppose that for some 𝑘 and 𝑚 and for any 𝑟 there exists a billiard in
ℝ𝑚 with piecewise 𝐶𝑟 smooth boundary such that 𝜇 Per𝑘 >0. Then there exists a billiard
in ℝ𝑚 with piecewise-analytic boundary such that the set Per𝑘 has an inner point in the
space of all orbits.

Theorem 3.1.4 For any planar billiard with piecewise-analytic boundary, the set Per4
has no inner points.

3.1.2 From Weyl to Ivrii

Though Conjecture 3.1.1 is a pure billiard theory question, it appeared as a geometrical
condition in the following PDE problem.

Consider the Dirichlet problem for the Laplace operator Δ in some domain Ω ⊂ ℝ𝑚.
The Laplace operator Δ is a negatively-determined self-adjoint operator, therefore its
eigenvalues with the Dirichlet boundary condition 𝑢|𝜕Ω = 0 are negative real numbers
0 ⩾ −𝜆2

1 ⩾ −𝜆2
2 ⩾ … ⩾ −𝜆2

𝑘 ⩾ … Denote by 𝑁(𝜆) the number of the eigenvalues −𝜆2
𝑖

such that 𝜆2
𝑖 < 𝜆2, that is,

𝑁(𝜆) = 𝑘 ⇔ 𝜆𝑘 < 𝜆 ⩽ 𝜆𝑘+1. (3.1)

Question 3.1.5 What is the asymptotic behaviour of the function 𝑁(𝜆)?

H. Weyl [24] proved that 𝑁(𝜆) is asymptotically proportional to 𝜆𝑚, where 𝑚 is the
dimension of Ω.

Theorem 3.1.6 (H. Weyl, 1911) Let Ω ⊂ ℝ𝑚 be a domain such that mes(Ω) < ∞ and
mes(𝜕Ω) = 0. Then

𝑁(𝜆) = 𝑐0 mes(Ω)𝜆𝑚 + 𝑜(𝜆𝑚),

where 𝑐0 = (2𝜋)−𝑚𝑤𝑚 and 𝑤𝑚 stands for the volume of 𝑚-dimensional unit ball.

After proving this theorem, Weyl obtained more precise asymptotic for 𝑁(𝜆) for Ω =
[𝑎1, 𝑏1] × … × [𝑎𝑚, 𝑏𝑚]. It turns out that in this case
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𝑁(𝜆) = 𝑐0 mes(Ω)𝜆𝑚 − 𝑐1 mes′(𝜕Ω)𝜆𝑚−1 + 𝑜(𝜆𝑚−1), (3.2)

where 𝑐1 = 1
4 (2𝜋)𝑚−1𝜔𝑚−1, and mes′ is the (𝑚 − 1)-dimensional measure. Weyl con-

jectured that the same formula holds for any domain Ω ⊂ ℝ𝑚 with sufficiently (piecewise)
smooth boundary.

Many mathematicians, including R. Courant, B. Levitan, V.Avakumovič, L. Hörman-
der, J. J. Duistermaat, V. Guillemin, R. Seeley and V. Ivrii contributed to the proof of this
conjecture. The best result was achieved byV. Ivrii (see [13]), who provedWeyl conjecture
for domains satisfying an additional geometric condition.

Theorem 3.1.7 (V. Ivrii, 1980) Let Ω be a domain in ℝ𝑚 with infinitely smooth bound-
ary. Suppose that in the corresponding billiard the set of the periodic orbits has measure
zero. Then for Ω, the asymptotic formula (3.2) holds.

This geometric condition is analogous to the condition that appears in the same prob-
lem for Riemannian manifolds without border. In the latter case we should require the set
of closed geodesics to have zero measure.

In 1980 V. Ya. Ivrii gave a talk in Ya. G. Sinai seminar (Moscow State University) —
one of the best seminars on billiards, and he conjectured (see Conjecture 3.1.1) that this
geometric condition holds for any domain in the Euclidean space with sufficiently smooth
boundary. Hewas told that this conjecture will be proven in a couple of days… in aweek…
in a month… in a year…

The conjecture still stands!
As we have noted above, the case of triangular orbits was studied by M. Rychlik [21]

and Ya. Vorobets [23]. We study the case of quadrilateral trajectories in planar billiards.

3.2 Reduction to the analytic case

In this section we will prove Theorem 3.1.3.
Suppose that for any 𝑟 there exists a billiard with piecewise 𝐶𝑟 smooth boundary such

that the measure of Per𝑘 is positive.
We will denote by 𝐴1, 𝐴2, … the vertices of a trajectory of the billiard map. If a

trajectory is 𝑘-periodic, then it is natural to count these vertices modulo 𝑘, i. e. 𝐴0 =
𝐴𝑘, 𝐴1 = 𝐴𝑘+1 etc. We will be interested only in 𝑘-gons that are non-degenerate in the
following sense.

Definition 3.2.1 A 𝑘-tuple of points 𝐴1, …, 𝐴𝑘 ∈ ℝ𝑚 is called a non-degenerate 𝑘-gon
if

• consequent vertices do not coincide, i. e. 𝐴𝑖 ≠ 𝐴𝑖+1 for 𝑖 = 1, …, 𝑘;
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• none of the angles is equal to 𝜋, i. e. ∠𝐴𝑖−1𝐴𝑖𝐴𝑖+1 ≠ 𝜋 for 𝑖 = 1, …, 𝑘.

Otherwise this 𝑘-tuple is called a degenerate 𝑘-gon.

Let us explain why it is natural to require a periodic billiard orbit to be a non-degenerate
𝑘-gon. If 𝐴𝑖 = 𝐴𝑖+1, then the reflection law at the vertices 𝐴𝑖 and 𝐴𝑖+1 makes no sense.

If ∠𝐴𝑖−1𝐴𝑖𝐴𝑖+1 = 𝜋, then the billiard map is not smooth at (𝐴𝑖−1,
−−−−−−−→
𝐴𝑖−1𝐴𝑖
𝐴𝑖−1𝐴𝑖

); moreover, in
this case there exists a ray arbitrarily close to 𝐴𝑖−1𝐴𝑖 that does not intersect the border 𝜕Ω
near 𝐴𝑖.

Remark 3.2.2 If 𝐴𝑖−1 ≠ 𝐴𝑖 and ∠𝐴𝑖−1𝐴𝑖𝐴𝑖+1 ≠ 𝜋 and the border 𝜕Ω is 𝐶𝑟-smooth at

the points 𝐴𝑖−1 and 𝐴𝑖 then the billiard map is 𝐶𝑟−1-smooth at the point (𝐴𝑖−1,
−−−−−−−→
𝐴𝑖−1𝐴𝑖
𝐴𝑖−1𝐴𝑖

).

The space of all non-degenerate 𝑘-gons is an open set in ℝ𝑚𝑘.
Consider a billiard table Ω ⊂ ℝ𝑚, and take a periodic non-degenerate orbit 𝐴1…𝐴𝑘.

The tangent space to the set of 𝑘-gons with vertices in 𝜕Ω at the point 𝐴1…𝐴𝑘 is the
Cartesian product of tangent hyperplanes 𝑇𝐴𝑖

𝜕Ω. Due to the reflection law, the hyperplane
𝑇𝐴𝑖

𝜕Ω is the exterior bisector of the angle 𝐴𝑖−1𝐴𝑖𝐴𝑖+1 for 𝑖 = 1, …, 𝑘, hence the space
⨁𝑘

𝑖=1 𝑇𝐴𝑖
𝜕Ω is the same for all domains Ω ⊂ ℝ𝑚 such that 𝐴1…𝐴𝑘 is a periodic trajectory

for the corresponding billiard.
Thus we obtain a 𝑘(𝑚 − 1)-dimensional distribution in the space of all non-degenerate

𝑘-gons in ℝ𝑚. Denote by ℱ this distribution. There is a strong connection between bil-
liard tables with ‘large' set of 𝑘-gonal orbits and non-trivial 2(𝑚 − 1)-dimensional integral
surfaces of this distribution.

We will need the following definition.

Definition 3.2.3 Wewill say that an 𝑟-jet of a 2(𝑚−1)-dimensional surface in ℝ𝑚𝑘 (i. e.,
an 𝑟-jet of a map 𝜑∶ (ℝ2(𝑚−1), 0) → ℝ𝑚𝑘) is an integral 𝑟-jet for the distribution ℱ if the
(𝑟 − 1)-jet of the map 𝑑𝜑 satisfies the (𝑟 − 1)-jet of the equations that define ℱ.
We will say that an integral 𝑟-jet (integral surface, germ of an integral surface) 𝜑 is
non-trivial if for any 𝑖 = 1, …, 𝑘 the composition of𝜑with the projection𝜋𝑖∶ (𝐴1, …, 𝐴𝑘) ↦
𝐴𝑖 has rank 𝑚 − 1.

Clearly, one can define an integral 𝑟-jet of any dimension in the same way but we
will need only 2(𝑚 − 1)-dimensional integral surfaces and integral jets, so we fixed the
dimension in the definition above.

Lemma 3.2.4 If there exists a domain Ω ⊂ ℝ𝑚 with 𝐶𝑟-smooth boundary such that
𝜇 Per𝑘 >0, then there exists a non-trivial integral (𝑟 − 1)-jet of the distribution ℱ. If there
exists a 𝐶𝑟-smooth (resp., analytic) non-trivial integral surface of ℱ, then there exists a
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domain Ω ⊂ ℝ𝑚 with piecewise 𝐶𝑟-smooth (resp., piecewise analytic) boundary such that
the set Per𝑘 has an inner point.

The non-triviality condition is needed becauseℱ has some trivial 2(𝑚−1)-dimensional
integral surfaces. For example, for 𝑚 = 2 and 𝑘 = 4 for any 𝑋, 𝑌 ∈ ℝ2 and 𝑠 > 𝑋𝑌 the
family

{(𝑋, 𝐴2, 𝑌, 𝐴4) || 𝑋𝐴2 + 𝐴2𝑌 = 𝑋𝐴4 + 𝐴4𝑌 = 𝑠}

is a two-dimensional integral surface of ℱ that does not correspond to any billiard
table.

Proof Let us prove the first part of the lemma. Let us fix a domain Ω with piecewise
𝐶𝑟-smooth boundary such that 𝜇 Per𝑘 >0. Recall that the phase space of the billiard map
has dimension 2(𝑚 − 1). Therefore, the set 𝑈 ⊂ ℝ𝑚𝑘 of non-degenerate billiard trajecto-
ries 𝐴1…𝐴𝑘 (including non-periodic trajectories) is a 𝐶𝑟−1-smooth 2(𝑚 − 1)-dimensional
manifold as well. Consider the map that sends each pair (𝐴1, 𝑣) to the corresponding bil-
liard trajectory 𝐴1…𝐴𝑘 of length 𝑘. Clearly, the restriction of this map to the pre-image
of 𝑈 is a smooth map from an open dense set in the phase space of the billiard map to 𝑈.
Let Per′

𝑘 ⊂ 𝑈 be the image of the set Per𝑘 under this map. Then the 2(𝑚 − 1)-dimensional
Lebesgue measure of Per′

𝑘 is positive. For any element 𝐴1…𝐴𝑘 ∈ Per′
𝑘 the tangent space

for 𝑈 at the point 𝐴1…𝐴𝑘 is a plane of the distribution ℱ. Therefore, for any Lebesgue
point 𝐴1…𝐴𝑘 of the set Per′

𝑘 the (𝑟 − 1)-jet of 𝑈 at 𝐴1…𝐴𝑘 is an integral jet of ℱ.
It remains to show that the rank of the composition of this (𝑟 − 1)-jet with each pro-

jection 𝜋𝑖∶ (𝐴1, …, 𝐴𝑘) ↦ 𝐴𝑖 is equal to 𝑚 − 1. Since the space of possible directions has
dimension 𝑚 − 1, it is sufficient to prove that the rank of the composition of this (𝑟 − 1)-jet

with each projection 𝜋′
𝑖∶ (𝐴1, …, 𝐴𝑘) ↦ (𝐴𝑖,

−−−−−−−→
𝐴𝑖𝐴𝑖+1
𝐴𝑖𝐴𝑖+1

) is 2(𝑚 − 1).
Fix an 𝑖 ∈ {1, …, 𝑘} and let us prove that the composition of this (𝑟−1)-jet with 𝜋′

𝑖 has

rank 2𝑚 − 2. For 𝑖 = 1 this is clear because 𝑈 is parametrized by 𝐴1 and
−−−−−→
𝐴1𝐴2
𝐴1𝐴2

. Let 𝑖 > 1.
Denote by 𝐁 the billiard map. Recall that 𝐴1…𝐴𝑘 is a non-degenerate 𝑘-gon, hence both

the billiard map 𝐁 and the inverse billiard map 𝐁−1 are smooth at each pair (𝐴𝑖,
−−−−−−−→
𝐴𝑖𝐴𝑖+1
𝐴𝑖𝐴𝑖+1

).

Thus the rank of the map 𝜋′
𝑖 = 𝐁𝑖−1 ∘ 𝜋′

1 is equal to 2𝑚 − 2. Therefore, the rank of the map
𝜋𝑖 equals 𝑚 − 1. So, we have proven the first part of the lemma.

Now we will prove the second part of the lemma. In this proof (and only in this proof)
we will use the notation 𝐶𝜔 for real analytic functions and allow 𝑟 to be either a natural
number or 𝜔. This will allow us to consider the case of an analytic integral surface together
with the case of 𝐶𝑟 integral surface.

Let 𝑈 be a non-trivial 2(𝑚 − 1)-dimensional 𝐶𝑟 smooth integral surface of the distrib-
ution ℱ. Due to the non-triviality condition, the images of 𝑈 under the projections 𝜋𝑖 are
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𝐶𝑟 submanifolds of dimension 𝑚 − 1. Obviously, every 𝐴1…𝐴𝑘 is an inner point of the
set Per𝑘 for any billiard Ω with piecewise 𝐶𝑟-smooth boundary 𝜕Ω such that for every 𝑖
the germ of 𝜕Ω at 𝐴𝑖 is the image of the germ of 𝑈 under projection 𝜋𝑖. This completes
the proof. ∎

Let us apply Lemma 3.2.4 to complete the proof of Theorem 3.1.3.
Due to the first part of the lemma, for any 𝑟 there exists a non-trivial integral 𝑟-jet of

ℱ. The main theorem of Chapter XI [20, p. 342] implies that for 𝑟 large enough and any
integral 2(𝑚 − 1)-dimensional 𝑟-jet there exists a germ of 2(𝑚 − 1)-dimensional analytic
integral surface of ℱ having the same 𝑟-jet. Therefore, ℱ has a non-trivial analytic integral
surface 𝑈 of dimension 2(𝑚 − 1). The second part of Lemma 3.2.4 completes the proof.

3.3 Analytic case

3.3.1 Strategy of the proof

Recall that our aim is to prove that there does not exist a planar billiard Ω with piece-
wise analytic boundary such that the set Per4 has an inner point.

Clearly, the property of being an inner point of the set Per𝑘 is local, i. e. this property
depends only on the germs of the boundary 𝜕Ω at the vertices of the trajectory. This
motivates the following definition.

Definition 3.3.1 A 𝑘-reflective billiard germ is a 𝑘-tuple of germs of analytic curves
𝛾𝑖∶ (ℝ, 0) → (ℝ2, 𝐴𝑖) such that

• 𝐴𝑖 ≠ 𝐴𝑖+1 for 𝑖 = 1, …, 𝑘 − 1, 𝐴𝑘 ≠ 𝐴1 (otherwise the reflection law makes no sense);
• the reflection law with respect to the curves 𝛾𝑖 holds at the vertices 𝐴𝑖, 𝑖 = 1, …, 𝑘;
• 𝐴1𝐴2…𝐴𝑘 is an inner point of the set Per𝑘 of 𝑘-gonal billiard orbits.

Clearly, the following statement implies Theorem 3.1.4.

Theorem 3.3.2 There does not exist an analytic 4-reflective billiard germ.

We will prove this theorem instead of Theorem 3.1.4. In this subsection we will only
give an idea of the proof, and the rest of this section is devoted to the detailed proof.

Assume the converse. Then there exists a 4-reflective analytic billiard germ (𝑎, 𝑏, 𝑐, 𝑑).
Let 𝐴𝐵𝐶𝐷 be the corresponding periodic trajectory.

We can extend the mirrors and the families of periodic trajectories analytically. Our
strategy will consist in extending the mirrors and the family of periodic trajectories suffi-
ciently far to obtain a contradiction.
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Namely, Lemma 3.3.11 lists the possible obstructions to analytic extension of a fam-
ily of 4-periodic trajectories with fixed base vertex 𝐴𝑖 ∈ 𝛾𝑖. Then Proposition 3.3.15,
Lemma 3.3.20, Proposition 3.3.21 and Proposition 3.3.30 show that each of these cases
holds for at most countable set of base vertices in 𝛾𝑖. On the other hand, the curve 𝛾𝑖 is
uncountable. This contradiction will complete the proof.

3.3.2 First observations for 𝑘-gonal trajectories

Aswe noted above, wewill study analytic extensions of the initial germs. Clearly, these
extensions can intersect existing billiard trajectories, so we need to modify the definition
of a billiard trajectory.

Definition 3.3.3 Let 𝛾1, 𝛾2, …, 𝛾𝑘∶ ℝ → ℝ2 be analytic curves. A 𝑘-tuple of points
𝐴1𝐴2…𝐴𝑘 is called a billiard trajectory for the 𝑘-tuple of mirrors 𝛾1, …, 𝛾𝑘 if 𝐴𝑖 ∈ 𝛾𝑖 and
the reflection law holds.

We will need to apply this definition for the case when some of the vertices 𝐴𝑖 are
singular points of the respective mirrors 𝛾𝑖. Thus we introduce the following convention.

Convention 3.3.4 Let 𝛾(𝑡0) be a singular point of a smooth curve 𝛾. We will say that 𝑙
is the tangent line to the curve 𝛾 at the point 𝛾(𝑡0) if 𝑙 is the limit

𝑙 = lim
𝑡→𝑡0

𝑇𝛾(𝑡)𝛾.

In particular, we say that there exists the tangent line at a cusp singular point.

Remark 3.3.5 In a family of 𝑘-periodic billiard trajectories, the vertices of the poly-
gon 𝐴1…𝐴𝑘 move in the directions of the exterior bisectors of the angles of this polygon,
therefore its perimeter is a constant. We may and will assume that this constant is equal
to one, 𝐴1𝐴2 + … + 𝐴𝑘−1𝐴𝑘 + 𝐴𝑘𝐴1 = 1.

One of the possible obstructions to the analytic extension of a family of periodic tra-
jectories is degeneracy of the limit trajectory. Recall the definition of a non-degenerate
𝑘-gon (we just replace 𝑚 by 2 in definition 3.2.1).

Definition 3.3.6 A 𝑘-tuple of points 𝐴1, …, 𝐴𝑘 ∈ ℝ2 is called a non-degenerate 𝑘-gon
if

• consequent vertices do not coincide, i. e. 𝐴𝑖 ≠ 𝐴𝑖+1 for 𝑖 = 1, …, 𝑘;
• none of the angles is equal to 𝜋, i. e. ∠𝐴𝑖−1𝐴𝑖𝐴𝑖+1 ≠ 𝜋 for 𝑖 = 1, …, 𝑘.

Otherwise this 𝑘-tuple is called a degenerate 𝑘-gon.
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𝐴 = 𝐷𝐵

𝐶

𝐴 𝐷𝐵

𝐶

𝐴 = 𝐵

𝐷

𝐶

Degenerate: 𝐴 = 𝐷 Degenerate: ∠𝐴 = 𝜋 Degenerate:
𝐴 = 𝐵, ∠𝐶 = 𝜋

𝐴 𝐵

𝐶

𝐷

𝐴 = 𝐶 𝐵

𝐷

𝐴 𝐵𝐶

𝐷

Non-degenerate Non-degenerate because
𝐴 and 𝐶 are not

consecutive vertices

Non-degenerate:
∠𝐵 is zero, not 𝜋

Figure 3.2 Degenerate and non-degenerate quadrilaterals 𝐴𝐵𝐶𝐷

A 𝑘-gon such that 𝐴𝑖 = 𝐴𝑖+1 for some 𝑖 is an obstruction to the extension because the
reflection law at𝐴𝑖 makes no sense for such polygons. A 𝑘-gon such that∠𝐴𝑖−1𝐴𝑖𝐴𝑖+1 = 𝜋
is an obstruction to the extension because if, say, the line 𝐴𝑖−1𝐴𝑖+1 and the mirror 𝛾𝑖
have 2-point contact at 𝐴𝑖, then there exists a ray arbitrarily close to 𝐴𝑖−1𝐴𝑖 that does not
intersect 𝛾𝑖 near 𝐴𝑖.

Some degenerate and non-degenerate quadrilaterals are shown in Figure 3.2.

3.3.3 Start of the proof of Theorem 3.3.2

Assume the converse. Then there exists an analytic 4-reflective billiard germ (𝑎, 𝑏, 𝑐, 𝑑).
Let us replace these germs by their maximal analytic extensions.

More precisely, given a germ 𝛾∶ (ℝ, 0) → ℝ2 we will replace it by a curve �̃� that con-
tains the maximal analytic extension (as a map ℝ → ℝ2) of any analytic reparametrization
of 𝛾. Let us prove that such curve �̃� exists. This fact should be known for ages but I have
not found any reference.

Note that all singular points of an analytic curve (except for the endpoints if they exist)
are cusps. Thus it is sufficient to extend 𝛾 beyond all cusps. Consider the unit speed
parametrization �̄� of 𝛾,
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�̄�(𝑠) = 𝛾(𝑡(𝑠)), 𝑠(𝑡) =

𝑡

∫
0

‖�̇�(𝜏)‖ 𝑑𝜏,

and replace �̄� by its maximal analytic extension (i. e., the extension till the next singular
point).

Then we extend �̄� through all cusps. The resulting curve �̂� will have singularities at
these cusps, and ‖˙̂𝛾‖ = 1 at any regular point. Therefore �̂� contains any analytic extension
of any reparametrization of the initial germ 𝛾, and we only need to find an analytic repa-
rametrization �̃� of the curve �̂�. Note that for any 𝑠𝑖 corresponding to a cusp there exists
𝑁𝑖 such that the curve �̃�𝑖∶ 𝑡 ↦ �̂�(𝑠𝑖 + 𝑡𝑁𝑖) is analytic at the origin. Thus we can change
the analytic structure near each point 𝑠𝑖 so that �̂� will become an analytic map from this
new abstract analytic one-dimensional manifold to the plane. Indeed, it is sufficient to
use 𝑁𝑖√𝑠 − 𝑠𝑖 as a new chart near 𝑠𝑖. Any contractible abstract analytic one-dimensional
manifold is analytically equivalent to the real line, hence there exists an analytic curve
�̃�∶ ℝ → ℝ2, �̃�(𝜏) = �̂�(𝑠(𝜏)), 𝑠 ∈ 𝐶(ℝ). Clearly, �̃� is a maximal analytic extension of 𝛾.

So, we have proved the existence of a maximal analytic extension.
We will approach the border of the set Per4 along the angle families 𝐴 = const.

Formally, fix some initial 4-reflective trajectory 𝐴0𝐵0𝐶0𝐷0. Let us fix 𝐴 = 𝐴0 and
start increasing the angle 𝛼 = ∠𝐵𝐴𝐷. Due to the 4-reflectivity of the initial billiard
germ, we will obtain a small 1-parametric family 𝐴𝐵𝛼𝐶𝛼𝐷𝛼 of quadrilateral billiard tra-
jectories. Consider the analytic extension of this family to the maximal possible interval
(𝛼−, 𝛼+) ⊂ (0, 𝜋), i. e. we do not try to extend the family beyond 𝛼 = 0 and 𝛼 = 𝜋.

Clearly, the curves 𝛼 ↦ 𝐵𝛼, 𝛼 ↦ 𝐶𝛼 and 𝛼 ↦ 𝐷𝛼 are analytic reparametrizations of
parts of the curves 𝑏, 𝑐 and 𝑑, respectively.

Remark 3.3.7 The vertices 𝐵𝛼, 𝐶𝛼 and 𝐷𝛼 can be singular points of the respective
curves for some values of 𝛼 ∈ (𝛼−, 𝛼+).

Notation 3.3.8 Denote by 𝛽𝛼, 𝛾𝛼 and 𝛿𝛼 the angles ∠𝐴𝐵𝛼𝐶𝛼, ∠𝐵𝛼𝐶𝛼𝐷𝛼 and ∠𝐶𝛼𝐷𝛼𝐴,
respectively. Denote by 𝐵+, 𝐶+, 𝐷+, 𝛽+, 𝛾+ and 𝛿+ the limits (if they exist) of 𝐵𝛼, 𝐶𝛼, 𝐷𝛼,
𝛽𝛼, 𝛾𝛼 and 𝛿𝛼 as 𝛼 → 𝛼+, respectively.

The 4-reflectivity is an analytic condition, hence all trajectories 𝐴𝐵𝛼𝐶𝛼𝐷𝛼 are 4-re-
flective. Formally, consider the fourth power of the billiard map, that is, the map of four
successive reflections against the border. Since the initial trajectory is 4-reflective, this
map is the identity map in some neighbourhood of the initial pair (𝐴, 𝐴𝐵

𝐴𝐵 ). On the other
hand, this map is analytic. Thus its analytic extension along the family of trajectories
𝐴𝐵𝛼𝐶𝛼𝐷𝛼 is the identity map, hence all trajectories 𝐴𝐵𝛼𝐶𝛼𝐷𝛼 are 4-reflective.
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It is not convenient to consider the cases 𝐵+ ∈ 𝑏 and 𝐵+ ∉ 𝑏, so we attach possible
values of 𝐵+ to the curve 𝑏 itself.

Convention 3.3.9 If an analytic curve has a limit either in the forward direction, or in the
reverse direction, we will attach these limits to the curve and consider them to be singular
points of the resulting curve.

The following notion will be used in some proofs to consider the similar cases together.

Definition 3.3.10 Let 𝛾1, 𝛾2, …, 𝛾𝑘 be analytic curves. We say that a point 𝑋 is a marked
point if it is either a singular point of one of these curves 𝛾𝑖 (including self-intersection
points and the limits attached to 𝛾𝑖 due to the previous convention) or an intersection point
of two different curves.

We would like to underline that “two different curves” in this definition means that
even if for some 𝑖 ≠ 𝑗 the curves 𝛾𝑖 and 𝛾𝑗 coincide, we do not mark all the points of 𝛾𝑖.
Thus, the set of marked points is at most countable.

The following lemma provides us the list of possible obstructions to the analytic ex-
tension of an angle family.

Lemma 3.3.11 For any initial quadrilateral one of the following cases holds.

1. At least one of the limits 𝐵+ = lim
𝛼→𝛼+

𝐵𝛼, 𝐶+ = lim
𝛼→𝛼+

𝐶𝛼 and 𝐷+ = lim
𝛼→𝛼+

𝐷𝛼 does not
exist.

2. 𝐴𝐵+𝐶+𝐷+ is a degenerate quadrilateral (see Definition 3.3.6).
3. At least two of the points 𝐵+, 𝐶+ and 𝐷+ are singular points of the corresponding

mirrors.

Proof Assume the converse, then for some initial quadrilateral

• the limits 𝐵+, 𝐶+ and 𝐷+ exist;
• the quadrilateral 𝐴𝐵+𝐶+𝐷+ is non-degenerate;
• at most one of the points 𝐵+, 𝐶+, 𝐷+ is a singular point of the corresponding curve.

Without loss of generality we can assume that 𝐵+ is a regular point of 𝑏, and either 𝐶+
or 𝐷+ is a regular point of 𝑐 or 𝑑, respectively. Then we can easily extend the family 𝐵𝛼
to some bigger interval. Note that the rays 𝐵𝛼𝐶𝛼 and 𝐴𝐷𝛼 depend only on 𝐴, 𝛼 and 𝐵𝛼.
Indeed, the line 𝐵𝛼𝐶𝛼 is the image of the line 𝐴𝐵𝛼 under the symmetry with respect to the
tangent line to 𝑏 at 𝐵𝛼, and the ray 𝐴𝐷𝛼 is the ray starting from 𝐴 in the known direction.

Consider two cases.
Case I. 𝐶+ is a regular point of 𝑐, then 𝐶𝛼 can be extended to a bigger interval as the

intersection point of the ray 𝐵𝛼𝐶𝛼 and the curve 𝑐. Hence, we can define the ray 𝐶𝛼𝐷𝛼 for



70

𝛼 close enough to 𝛼+ (including the values of 𝛼 greater than 𝛼+). Therefore we can define
𝐷𝛼 as the intersection point of the rays 𝐶𝛼𝐷𝛼 and 𝐴𝐷𝛼. Due to the inequality 𝛿+ ≠ 𝜋, for
𝛼 sufficiently close to 𝛼+ this intersection point exists, is unique and analytically depends
on 𝛼. Finally, we can extend the family 𝐴𝐵𝛼𝐶𝛼𝐷𝛼 to a bigger interval, which contradicts
the assumption that (𝛼−, 𝛼+) is the maximal interval. Therefore, this case is impossible.

Case II. 𝐷+ is a regular point of 𝑑, then 𝐷𝛼 can be extended to a bigger interval as
the intersection point of the ray 𝐴𝐷𝛼 and the curve 𝑑. Hence, we can define the ray 𝐷𝛼𝐶𝛼
for 𝛼 close enough to 𝛼+ (including the values of 𝛼 greater than 𝛼+). Let us define 𝐶𝛼
as the intersection point of the rays 𝐷𝛼𝐶𝛼 and 𝐵𝛼𝐶𝛼. Due to the inequality 𝛾+ ≠ 𝜋, this
intersection point exists, is unique and analytically depends on 𝛼. Finally, we can extend
the family 𝐴𝐵𝛼𝐶𝛼𝐷𝛼 to a bigger interval, which contradicts the assumption that (𝛼−, 𝛼+)
is the maximal interval. Therefore, this case is also impossible.

Finally, both cases are impossible. This completes the proof of the lemma. ∎

It is convenient to choose which vertex to fix. In order to avoid renaming of the mirrors
in themiddle of the proof, wewill now rename themirrors so that the following convention
holds.

Convention 3.3.12 (Naming convention)We say that a 4-reflective billiard germ (𝑎, 𝑏, 𝑐, 𝑑)
with marked mirror 𝑎 satisfies the naming convention if

1. neither 𝑎 nor 𝑐 is a line;
2. if one of the mirrors is an ellipse then either 𝑏 or 𝑑 is either an ellipse or a line.

Note that it is possible to rename the mirrors so that the naming convention will hold
unless at least two of the mirrors are straight lines. Indeed, if one of the mirrors is a line,
let us rename the mirrors so that 𝑏 is a line, and the naming convention will be satisfied;
otherwise, none of themirrors is a straight line, thus the first condition holds automatically,
and it is easy to satisfy the second condition.

Lemma 3.3.13 At most one of the mirrors 𝑎, 𝑏, 𝑐, 𝑑 is a straight line.

The following elegant proof was given by V. Kleptsyn.

Proof Assume that at least two of the curves 𝑎, 𝑏, 𝑐 and 𝑑 are lines. Let us consider two
cases.

Case I. The curves 𝑎 and 𝑏 are straight lines (see Fig. 3.3(a)). Let us fix a point 𝐷 ∈ 𝑑
and consider a small angle family 𝐴𝛿𝐵𝛿𝐶𝛿𝐷. Denote by 𝐷′ the image of the point 𝐷 under
the reflection with respect to the line 𝑎. Denote by 𝐷′′ the image of the point 𝐷′ under the
reflection with respect to the line 𝑏. Then for any 𝐶 ∈ 𝑐,

𝐷𝐶 + 𝐶𝐷′′ = 𝐷𝐶 + 𝐷′𝐵 + 𝐵𝐶 = 𝐷𝐶 + 𝐷𝐴 + 𝐴𝐵 + 𝐵𝐶 = 1.
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𝐴
𝐵

𝐶
𝐷

𝐷′

𝐷′′

𝐴

𝐵

𝐶
𝐷

𝐵′

𝐵′′

(a) The mirrors 𝑎 and
𝑏 are straight lines

(b) The mirrors 𝑎 and
𝑐 are straight lines

Figure 3.3 Two mirrors are straight lines

Thus 𝑐 is an ellipse with foci 𝐷 and 𝐷′′ for any 𝐷 ∈ 𝑑. Therefore all points of the curve
𝑑 are the foci of the same ellipse which is impossible. Therefore this case is impossible.

Case II. The curves 𝑎 and 𝑐 are lines (see Fig. 3.3 (b)). Let us fix a point 𝐵 ∈ 𝑏 and
consider a small angle family 𝐴𝛽𝐵𝐶𝛽𝐷𝛽. Denote by 𝐵′ and 𝐵′′ the images of the point 𝐵
under the reflection with respect to the lines 𝑎 and 𝑐, respectively. Then for any 𝐷 ∈ 𝑑,

𝐵′𝐷 + 𝐵′′𝐷 = 𝐵𝐴 + 𝐴𝐷 + 𝐵𝐶 + 𝐶𝐷 = 1.
Thus 𝑑 is an ellipse with foci 𝐵′ and 𝐵′′ for every 𝐵 ∈ 𝑏 which is impossible. Therefore
this case is also impossible.

Finally, at most one of the curves 𝑎, 𝑏, 𝑐 and 𝑑 is a line. ∎

Later we will say “for a generic point 𝐴 ∈ 𝑎” instead of “for a generic point 𝐴 ∈ 𝑎 for
any angle family corresponding to this point”. In this chapter we use rather strong notion
of genericity.

Convention 3.3.14 We say that some property holds for a generic point 𝐴 ∈ 𝑎, if it
holds for all but at most countable set of points 𝐴 ∈ 𝑎.

The next subsections deal with the cases from Lemma 3.3.11 one by one and show
that these cases hold for at most countable set of points 𝐴 ∈ 𝑎. Hence there exists a point
of the mirror 𝑎 that satisfies none of these cases, but this contradicts Lemma 3.3.11. This
contradiction will complete the proof.

3.3.4 Existence of the limits

In this Section we will prove the following proposition.
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Proposition 3.3.15 Suppose that the naming convention holds. Then for a generic point
𝐴 ∈ 𝑎 the limits 𝐵+, 𝐶+ and 𝐷+ exist, 𝐵+ ≠ 𝐴 and 𝐷+ ≠ 𝐴.

In Lemma 3.3.16 we will prove that the limits 𝐵+ and 𝐷+ exist and do not coincide
with 𝐴, and in Lemma 3.3.19 we will show that the limit 𝐶+ exists as well.

Lemma 3.3.16 Suppose that the naming convention holds. Then for a generic point
𝐴 ∈ 𝑎 the limits 𝐵+ and 𝐷+ exist, 𝐵+ ≠ 𝐴 and 𝐷+ ≠ 𝐴.

Proof First, let us prove that for a generic point 𝐴 ∈ 𝑎, the limits 𝐵+ and 𝐷+ exist. Due
to the symmetry between 𝐵 and 𝐷 it is sufficient to show that the limit 𝐵+ exists.

𝐴

𝐷+

𝑏

𝑙

Figure 3.4 Oscillating curve 𝑏

Assume the converse. Then the limit 𝐵+ does not ex-
ist for uncountably many points 𝐴 ∈ 𝑎. Take a point
𝐴 ∈ 𝑎 such that the limit 𝐵+ does not exist, see Fig-
ure 3.4. Note that the line 𝐴𝐵𝛼 depends only on 𝐴 and
𝛼. Therefore this line tends to some limit position 𝑙 as
𝛼 → 𝛼+,

𝑙 = lim
𝛼→𝛼+

(line 𝐴𝐵𝛼).

Recall that the perimeter of the quadrilateral 𝐴𝐵𝛼𝐶𝛼𝐷𝛼 is one, hence 𝐵𝛼 belongs to
the unit disk centered at 𝐴. Therefore, dist(𝐵𝛼, 𝑙) tends to zero as 𝛼 tends to 𝛼+.

The mirror 𝑎 is not a line, hence the intersection 𝑎 ∩ 𝑙 is at most countable. Consider a
point 𝐴′ ∈ 𝑎∖𝑙 such that the limit 𝐵+(𝐴′) does not exist as well. Consider the correspond-
ing angle family 𝐴′𝐵′

𝛼𝐶′
𝛼𝐷′

𝛼. Let 𝑙′ be the limit position of the line 𝐴′𝐵′
𝛼. Therefore, 𝐵′

𝛼
tends to the line 𝑙′.

Thus the curve 𝑏 tends to both lines 𝑙 and 𝑙′, hence 𝑏 tends to the intersection point
𝑙 ∩ 𝑙′, therefore both limits 𝐵+(𝐴) and 𝐵+(𝐴′). Thus for a generic point 𝐴 ∈ 𝑎 the limit
𝐵+ exists.

Now, let us prove that 𝐵+ ≠ 𝐴 and 𝐷+ ≠ 𝐴. Again, we will only prove that 𝐵+ ≠ 𝐴.
Assume the converse, i. e. for uncountably many points 𝐴 ∈ 𝑎 the limit 𝐵+ coincides
with 𝐴.

Recall that we have attached the limits of the mirror 𝑏 (if they exist) to the curve 𝑏
itself, hence 𝐵+ ∈ 𝑏. Therefore, the equality 𝐴 = 𝐵+ is possible only if 𝐴 ∈ 𝑏. Note that
if 𝑎 ≠ 𝑏, then the intersection 𝑎 ∩ 𝑏 is at most countable, thus 𝐴 ≠ 𝐵+ for a generic point
𝐴 ∈ 𝑎. Therefore, 𝑎 = 𝑏.

Consider the set

𝑉 = {𝐴 ∈ 𝑎 || ∃𝐵+(𝐴), 𝐴 = 𝐵+, 𝐴 is neither a marked point nor an inflection point of 𝑎}.

The set of marked points is at most countable, as well as the set of inflection points of
𝑎. Therefore, the set 𝑉 is uncountable.
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𝑐

𝑑

𝐴 𝐶+𝐷+

𝐴′

𝐷′
+

𝐶 ′
+

Figure 3.5 A curve and two involutes of this curve

For 𝐴 ∈ 𝑉, the point 𝐵𝛼 tends to 𝐴 along a regular arc of the mirror 𝑎, hence the line
𝐴𝐵𝛼 tends to the tangent line to 𝑎 at 𝐴. Therefore, for 𝐴 ∈ 𝑉 the angles 𝛼+ and 𝛽+ must
be equal to 𝜋, thus the angles 𝛾+ and 𝛿+ must be equal to 0. In this case for every 𝐴 ∈ 𝑉
the limits 𝐶+ and 𝐷+ exist and belong to the intersection of 𝑇𝐴𝑎 with the mirrors 𝑐 and
𝑑, respectively. Also note that for a generic point 𝐴 ∈ 𝑎 these intersections are regular
points of the corresponding curves. Therefore for a generic point 𝐴 ∈ 𝑉 the curves 𝑐 and
𝑑 are perpendicular to the tangent line 𝑇𝐴𝑎 (reflection law), thus the same holds true for
any point 𝐴 ∈ 𝑎. Hence the curves 𝑐 and 𝑑 are involutes of the mirror 𝑎, therefore the
curve 𝑎 is the evolute of 𝑐 and 𝑑 (see Figure 3.5).

Note that 𝐴 ≠ 𝐶+ and 𝐴 ≠ 𝐷+ for 𝐴 ∈ 𝑉. Indeed, the tangent lines to 𝑐 at 𝐶+ and to
𝑑 at 𝐷+ are perpendicular to the tangent line to 𝑎 at 𝐴. Therefore the germs (𝑐, 𝐶+) and
(𝑑, 𝐷+) cannot coincide with the germ (𝑎, 𝐴). Since 𝐴 is not a marked point, 𝐴 ≠ 𝐶+ and
𝐴 ≠ 𝐷+.

Let us consider the trajectory 𝐴𝐵𝛼𝐶𝛼𝐷𝛼 for 𝛼 = 𝜋 − , ≪ 1. Let 𝑙′ be the perpen-
dicular to 𝑑 at 𝐷𝛼. Let �̂� be the image of 𝐴 under reflection with respect to 𝑙′. Since 𝑑 is
an involute for 𝑎, the line 𝑙′ is tangent to 𝑎, 𝑙′ = 𝑇𝑋𝑎. Clearly, the segment 𝑋𝐵𝛼 intersects
the line 𝐴𝐷𝛼 and the segment 𝐵𝛼𝐶𝛼 does not intersect this line. Hence, the segment 𝑋𝐶𝛼
intersects the line 𝐴𝐷𝛼, and the segment �̂�𝐶𝛼 intersects 𝐴𝐷𝛼 as well. On the other hand,
due to reflection law the ray [𝐷𝛼�̂�) must coincide with the ray [𝐷𝛼𝐶𝛼), hence the segment
[𝐶𝛼�̂�] does not intersect 𝐴𝐷𝛼. This contradiction completes the proof. ∎
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𝑐
𝑑

𝑙′

𝐴�̂� 𝐵𝛼

𝐶𝛼

𝐷𝛼

𝑋

Figure 3.6 Reflection in involute

In order to prove the existence of the limit 𝐶+ we will need the following two easy
lemmas.

Lemma 3.3.17 Suppose that the naming convention holds, and for uncountably many
points 𝐴 ∈ 𝑎 the limits 𝐵+ and 𝐷+ exist and are marked points. Then 𝑎 is an ellipse.

Proof Note that the function 𝜑∶ 𝐴 ↦ (𝐵+, 𝐷+) takes countably many values on an un-
countable set. Therefore it is a constant on some uncountable subset. Let (𝐵0

+, 𝐷0
+) be this

constant, i. e. |𝜑−1(𝐵0
+, 𝐷0

+)| > |ℕ|. Note that for each point 𝐴 ∈ 𝜑−1(𝐵0
+, 𝐷0

+) the tangent
line 𝑇𝐴𝑎 is the exterior bisector of the angle 𝐵0

+𝐴𝐷0
+. Let us consider the analytic func-

tion 𝑠(𝐴) = 𝐴𝐵0
+ + 𝐴𝐷0

+. The derivative of this function is equal to zero at uncountably
many points, namely at any non-isolated point 𝐴 ∈ 𝜑−1(𝐵0

+, 𝐷0
+). Hence, 𝑠(𝐴) is constant,

therefore 𝑎 is an ellipse or a line. Due to the naming convention, 𝑎 is not a line, hence 𝑎 is
an ellipse. ∎

Lemma 3.3.18 Suppose that the naming convention holds. Then for a generic point
𝐴 ∈ 𝑎 at least one of the points 𝐵+ and 𝐷+ is a regular point of the corresponding mirror.

Proof Assume the converse. Then 𝐵+ and 𝐷+ belong to at most countable set of marked
points for uncountably many points 𝐴 ∈ 𝑎. Therefore 𝑎 is an ellipse but the curves 𝑏 and
𝑑 are singular curves. This contradicts our naming convention. ∎

Lemma 3.3.19 Suppose that the naming convention holds. Then for a generic point
𝐴 ∈ 𝑎 the limit 𝐶+ exists.

Proof Denote by 𝑠(𝐴, 𝛼) the sum 𝐴𝐵𝛼 + 𝐴𝐷𝛼. Due to Lemma 3.3.16, for a generic
point 𝐴 ∈ 𝑎 both limits 𝐵+ and 𝐷+ exist, therefore the limit 𝑠(𝐴, 𝛼+) of 𝑠(𝐴, 𝛼) as
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𝐴
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𝐷+
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lim 𝐵𝛼𝐶𝛼

ℰ

𝑎

𝑏

𝐴

𝐵+

𝐷+

𝑙

𝑎

𝑏

𝑑

𝑐

(a) 1 − 𝑠(𝐴, 𝛼+) > 𝐵+𝐷+ (b) 1 − 𝑠(𝐴, 𝛼+) = 𝐵+𝐷+

Figure 3.7 Cases in Lemma 3.3.19

𝛼 → 𝛼+ exists as well. Hence, the limit of the sum 𝐵𝛼𝐶𝛼 + 𝐶𝛼𝐷𝛼 = 1 − 𝑠(𝐴, 𝛼)
also exists and is equal to 1 − 𝑠(𝐴, 𝛼+), thus the vertex 𝐶𝛼 tends to the ellipse ℰ =
{𝑋 | 𝐵+𝑋 + 𝑋𝐷+ = 1 − 𝑠(𝐴, 𝛼+)}.

First consider the case of non-degenerate ellipse ℰ, i. e. 1 − 𝑠(𝐴, 𝛼+) > 𝐵+𝐷+, see
Figure 3.7 (a). Due to Lemma 3.3.18, for a generic point 𝐴 either 𝐵+ or 𝐷+ is a regular
point of the respective mirror. Obviously, it is sufficient to consider the case when 𝐵+
is a regular point of 𝑏. In this case both limits lim

𝛼→𝛼+
𝐴𝐵+ and lim

𝛼→𝛼+
𝑇𝐵𝛼

𝑏 exist, hence the
limit of the ray 𝐵𝛼𝐶𝛼 as 𝛼 → 𝛼+ exists as well. This limit ray intersects the ellipse ℰ
by exactly one point 𝐶′

+. Since 𝐶𝛼 must tend both to the ray 𝐵+𝐶′
+ and to the ellipse ℰ,

lim
𝛼→𝛼+

𝐶𝛼 = 𝐶′
+. Finally, for a generic point 𝐴 if 1 − 𝑠(𝐴, 𝛼+) > 𝐵+𝐷+, then the limit 𝐶+

exists.
Now let us consider the case 1 − 𝑠(𝐴, 𝛼+) = 𝐵+𝐷+, see Figure 3.7 (b).. In this case

𝐶𝛼 must oscillate along the segment 𝐵+𝐷+. Note that the curve 𝑐 can oscillate along at
most two lines, therefore the line 𝐵+𝐷+ must be the same (say, 𝑙) for uncountably many
points 𝐴.

Let us prove that none of the mirrors 𝑏 and 𝑑 coincide with the line 𝑙. As usual, it
is sufficient to prove that 𝑏 ≠ 𝑙. Assume the converse. Recall that due to the naming
convention 𝑎 is not a line, therefore the intersection 𝑎 ∩ 𝑙 is at most countable. Thus there
exist uncountably many points 𝐴 ∈ 𝑎 such that

• the point 𝐴 does not belong to the line 𝑙;
• the line 𝐵+𝐷+ coincides with the line 𝑙;
• the curve 𝑐 oscillates along the line 𝑙.
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Since 𝐴 ∉ 𝑙, the angle between the lines 𝐴𝐵+ and 𝑙 is non-zero. Hence, the angle
between the line 𝑏 = 𝑙 and the reflected ray 𝐵𝛼𝐶𝛼 must tend to the same nonzero number.
But in this case the curve 𝑐 cannot oscillate along the line 𝑙. This contradiction shows that
the assumption is false, i. e. none of the mirrors 𝑏 and 𝑑 coincide with the line 𝑙.

Finally, 𝑏 ≠ 𝑙 and 𝑑 ≠ 𝑙, therefore 𝐵+ and 𝐷+ belong to at most countable set of points
(𝑏 ∪ 𝑑) ∩ 𝑙 for uncountably many points 𝐴. Therefore, 𝐵+ and 𝐷+ do not depend on 𝐴
for 𝐴 from some uncountable set. The rest of this paragraph deals only with the points
𝐴 from this uncountable set. Due to Lemma 3.3.17, the curve 𝑎 is an ellipse. Due to our
naming convention, either 𝑏 or 𝑑 is either an ellipse or a line.

Without loss of generality we can and will assume that the curve 𝑏 is an ellipse or a
line, thus the limit of 𝑇𝐵𝑏 as 𝐵 → 𝐵+ exists. Note that 𝐶𝛼 oscillates along 𝐵+𝐷+ thus
there exists a sequence 𝛼𝑛 → 𝛼+ such that the ray 𝐵𝛼𝑛

𝐶𝛼𝑛
tends to 𝐵+𝐷+ as 𝑛 → ∞.

The exterior bisector of the angle 𝐴𝐵𝛼𝑛
𝐶𝛼𝑛

is the tangent line to 𝑏 at the point 𝐵𝛼𝑛
, thus

the sequence of these bisectors tends to 𝑇𝐵+
𝑏. Note that both the limit of the sequence of

exterior bisectors and the limit of the rays 𝐵𝛼𝑛
𝐶𝛼𝑛

do not depend on 𝐴, thus the line 𝐴𝐵+
does not depend on 𝐴, and the point 𝐴 must belong to the intersection of this line with the
curve 𝑎. Therefore, this intersection is uncountable, hence 𝑎 is a line, which contradicts
our naming convention. This contradiction completes the proof. ∎

3.3.5 Case of two singular points

The following Lemma reduces the case of two singular points to the case of coinciding
limits.

Lemma 3.3.20 Suppose that the naming convention holds. For a generic point 𝐴 ∈ 𝑎 if
two of the points 𝐵+, 𝐶+, 𝐷+ are singular points of the corresponding mirrors, then either
𝐵+ = 𝐶+, or 𝐶+ = 𝐷+.

Proof Assume the converse, then there exist uncountably many points 𝐴 ∈ 𝑎 such that
at least two of the points 𝐵+, 𝐶+, 𝐷+ are singular points of the corresponding mirrors, and
𝐵+ ≠ 𝐶+, 𝐶+ ≠ 𝐷+.

Due to Lemma 3.3.18, for a generic point 𝐴 ∈ 𝑎 either 𝐵+ or 𝐷+ is a regular point of
the corresponding mirror, thus either 𝐵+ and 𝐶+, or 𝐶+ and 𝐷+ are singular points of the
corresponding mirrors. Due to the symmetry, it is sufficient to consider the former case,
𝐵+ and 𝐶+ are singular points of 𝑏 and 𝑐 and 𝐵+ ≠ 𝐶+.

The set of singular points of an analytic curve is atmost countable, thus the set𝑉(𝐵0, 𝐶0) =
{𝐴 | 𝐵+(𝐴) = 𝐵0, 𝐶+(𝐴) = 𝐶0} is uncountable for some two singular points 𝐵0 ∈ 𝑏,
𝐶0 ∈ 𝑐, 𝐵0 ≠ 𝐶0. Note that if 𝐴 ∈ 𝑉(𝐵0, 𝐶0) ∖ {𝐵0}, then 𝐴 ≠ 𝐵+ and 𝐵+ ≠ 𝐶+,
hence the limit of the exterior bisector of the angle 𝐴𝐵𝛼𝐶𝛼 as 𝛼 → 𝛼+ exists. On the other
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hand, this exterior bisector is the tangent line to 𝑏 at 𝐵𝛼, thus the limit of the tangent line
to 𝑏 at 𝐵 as 𝐵 → 𝐵+ exists.

The line 𝐴𝐵+ is the image of the line 𝐵+𝐶+ under the reflection with respect to 𝑇𝐵+
𝑏,

hence the line 𝑙 = 𝐴𝐵+ is the same for all points 𝐴 ∈ 𝑉(𝐵0, 𝐶0) ∖ {𝐵0}. Therefore
𝑉(𝐵0, 𝐶0) ∖ {𝐵0} is a subset of the intersection 𝑙 ∩ 𝑎 which is at most countable. Thus
𝑉(𝐵0, 𝐶0) is at most countable, which contradicts the statement from the previous para-
graph. This contradiction proves the Lemma. ∎

3.3.6 Straight angle case

The main result of this subsection is the following statement.

Proposition 3.3.21 Suppose that the naming convention holds. For a generic point 𝐴 ∈
𝑎 if 𝐵+ ≠ 𝐶+, and 𝐶+ ≠ 𝐷+, then none of the angles of the quadrilateral 𝐴𝐵+𝐶+𝐷+
equals 𝜋.

Remark 3.3.22 Recall that for a generic point 𝐴 ∈ 𝑎 the limits 𝐵+, 𝐶+ and 𝐷+ exist
and 𝐴 ≠ 𝐵+, 𝐴 ≠ 𝐷+. The conditions 𝐵+ ≠ 𝐶+ and 𝐶+ ≠ 𝐷+ are needed to define the
angles of 𝐴𝐵+𝐶+𝐷+.

We will split the proof of this statement into a few lemmas.
The following three lemmas prove that the angle of measure 𝜋 cannot appear with

another degeneracy for a generic point 𝐴. Then wewill prove that the straight angle cannot
appear without other degeneracies, thus completing the proof of Proposition 3.3.21.

Lemma 3.3.23 Suppose that the naming convention holds. For a generic point 𝐴 ∈ 𝑎
if 𝐵+ ≠ 𝐶+ and 𝐶+ ≠ 𝐷+, then at most one of the angles 𝛼+, 𝛽+, 𝛾+ and 𝛿+ is equal to 𝜋.

Proof Suppose that at least two of the angles 𝛼+, 𝛽+, 𝛾+, 𝛿+ are equal to 𝜋. Then two
other angles are equal to 0, and the quadrilateral 𝐴𝐵+𝐶+𝐷+ is a segment. Note that the
angle 𝛼 always increases, thus 𝛼+ ≠ 0. Therefore 𝛼+ = 𝜋, hence the line 𝐴𝐵+𝐶+𝐷+ is
tangent both to 𝑎 and one of the curves 𝑏, 𝑐 and 𝑑. Let 𝑝 be this other curve, and 𝑃 be the
corresponding vertex.

The set of common tangent lines to two different analytic curves is at most countable,
as well as the set of the lines that are tangent to the curve 𝑎 at two different points (recall
that 𝑎 is not a line). Therefore, 𝑃 = 𝐴 and 𝑝 = 𝑎. Due to Lemma 3.3.16, for a generic
point 𝐴 ∈ 𝑎 neither 𝐵+, nor 𝐷+ coincides with 𝐴. Hence, 𝑝 = 𝑐 and 𝑃 = 𝐶+, i. e. 𝑎 = 𝑐
and 𝐴 = 𝐶+.

Using the same arguments as in Lemma 3.3.16, one can prove that the mirrors 𝑏 and
𝑑 are involutes of the mirror 𝑎. Note that for 𝛼 close enough to 𝜋 the mirror 𝑎 has no
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Figure 3.8 One straight angle, one fixed vertex

inflection points between 𝐴 and 𝐶𝛼. Let 𝑙𝛼 be the bisector of the angle 𝐴𝐵𝛼𝐶𝛼. On the one
hand, it must intersect the mirror 𝑎 between the points 𝐴 and 𝐶𝛼, therefore 𝑙𝛼 cannot be
tangent to 𝑎. On the other hand, it is perpendicular to the involute of 𝑎, therefore it must
be tangent to 𝑎. This contradiction completes the proof. ∎

Lemma 3.3.24 Suppose that the naming convention holds. For a generic point 𝐴 ∈ 𝑎
if 𝐵+ ≠ 𝐶+, 𝐶+ ≠ 𝐷+ and one of the angles of the quadrilateral 𝐴𝐵+𝐶+𝐷+ equals 𝜋,
then none of the vertices of 𝐴𝐵+𝐶+𝐷+ is a singular point of the respective curve.

Proof This lemma is immediately implied by the following lemma and the fact that the
set of singular points of an analytic curve is at most countable. ∎

Lemma 3.3.25 Suppose that the naming convention holds. Then there does not exist
an uncountable set 𝑉 ⊂ 𝑎 and a point 𝑃 ∈ ℝ2 such that for any 𝐴 ∈ 𝑉 the following
conditions hold.

1. the limits 𝐵+, 𝐶+ and 𝐷+ exist;
2. 𝐴 ≠ 𝐵+, 𝐵+ ≠ 𝐶+, 𝐶+ ≠ 𝐷+ and 𝐷+ ≠ 𝐴;
3. exactly one of the angles of the quadrilateral 𝐴𝐵+𝐶+𝐷+ equals 𝜋;
4. one of the points 𝐴, 𝐵+, 𝐶+, 𝐷+ coincides with 𝑃.

Proof Assume the converse. Without loss of generality we can and will assume that
the same angle of the quadrilateral 𝐴𝐵+𝐶+𝐷+ equals 𝜋 for all 𝐴 ∈ 𝑉 and the same vertex
coincideswith𝑃. Let𝑃, 𝑄, 𝑅, 𝑆 be the vertices of the quadrilateral𝐴𝐵+𝐶+𝐷+ enumerated
starting from 𝑃 either in the same or in the opposite cyclic order as 𝐴, 𝐵+, 𝐶+, 𝐷+. Denote
by 𝑝, 𝑞, 𝑟, 𝑠 the corresponding mirrors.

Due to the second assumption of the Lemma, the mirrors 𝑝, 𝑞, 𝑟, 𝑠 have the tangents at
the points 𝑃, 𝑄, 𝑅, 𝑆 in the sense of Convention 3.3.4.

Consider three cases (see Figure 3.8).
Case I. ∠𝑃 = 𝜋. In this case the points 𝑆 and 𝑄 belong to the intersection of the line

𝑇𝑃𝑝 with the mirrors 𝑠 and 𝑞, respectively. Note that this intersection is at most countable.
Indeed, if either 𝑠 or 𝑞 intersects the line 𝑇𝑃𝑝 on uncountably many points, then this curve
must coincide with 𝑇𝑃𝑝, hence either ∠𝑆 = 𝜋 or ∠𝑄 = 𝜋 which contradicts Lemma 3.3.23.
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Finally, 𝑅 also belongs to the countable set of the intersections of two families of lines,
namely, the images of the line 𝑇𝑃𝑝 under the reflections with respect to the lines 𝑇𝑄𝑞 and
𝑇𝑆𝑠. Therefore the set of quadrilaterals 𝑃𝑄𝑅𝑆 is at most countable. Hence, this case is
impossible.

Case II. ∠𝑄 = 𝜋 or ∠𝑆 = 𝜋. We will consider only the case ∠𝑄 = 𝜋, because the
other case can be reduced to this one by renaming the points. Note that the number of
tangent lines to 𝑞 passing through the point 𝑃 is at most countable. Therefore the line
𝑃𝑄𝑅 belongs to at most countable set. Recall that the line 𝑅𝑆 is the image of the line
𝑃𝑅 under the reflection with respect to 𝑇𝑅𝑟. Note that the curve 𝑟 cannot coincide with a
line 𝑃𝑄𝑅. Indeed, otherwise ∠𝑄 = ∠𝑅 = 𝜋 which is impossible due to Assumption 3.
Therefore the point 𝑅 belongs to at most countable set, and the line 𝑅𝑆 belongs to at most
countable set as well. Finally, each of the points 𝑃, 𝑄, 𝑅, 𝑆 belongs to the union of at
most countable set of lines. Therefore, the point 𝐴 also belongs to the union of at most
countable set of lines and due to the naming convention 𝐴 belongs to at most countable
set of points. Thus this case is also impossible.

𝑃

𝑄0 𝑅0 𝑆0

𝑄 𝑆

𝑃

𝑄0 𝑅0 𝑆0

𝑄 𝑆

Case III a Case III b

Figure 3.9 Perturbation of a degenerate quadrilateral in Case III

Case III.∠𝑅 = 𝜋, see Figure 3.9. Let us prove that the set of the possible triangles𝑃𝑄𝑆
is discrete. Let us consider one of the quadrilaterals 𝑃𝑄0𝑅0𝑆0 and another quadrilateral
𝑃𝑄𝑅𝑆 close enough to 𝑃𝑄0𝑅0𝑆0. Note that 𝑄0𝑅0𝑆0 and 𝑄𝑅𝑆 are tangent lines to the
curve 𝑟 at close points 𝑅 and 𝑅0. Therefore the segments 𝑄𝑆 and 𝑄0𝑆0 must intersect
each other. Consider two cases.

Case III a. ∠𝑄𝑃𝑆 > ∠𝑄0𝑃𝑆0. Since the tangent line 𝑇𝑃𝑝 exists, ∠𝑄𝑃𝑆0 > ∠𝑄0𝑃𝑆0
and ∠𝑄0𝑃𝑆 > ∠𝑄0𝑃𝑆0. Since the line 𝑄𝑄0 (resp., 𝑆𝑆0) is close to the exterior bisector
of the angle ∠𝑃𝑄0𝑆0 (resp., ∠𝑃𝑆0𝑄0), both segments 𝑃𝑄 and 𝑃𝑆 do not intersect the
line 𝑄0𝑆0. Therefore, the segment 𝑄𝑆 does not intersect the line 𝑄0𝑆0. Thus this case is
impossible.

Case III b. ∠𝑄𝑃𝑆 < ∠𝑄0𝑃𝑆0. Since the tangent line 𝑇𝑃𝑝 exists, ∠𝑄𝑃𝑆0 < ∠𝑄0𝑃𝑆0
and ∠𝑄0𝑃𝑆 < ∠𝑄0𝑃𝑆0. Since the line 𝑄𝑄0 (resp., 𝑆𝑆0) is close to the exterior bisector
of the angle ∠𝑃𝑄0𝑆0 (resp., ∠𝑃𝑆0𝑄0), both segments 𝑃𝑄 and 𝑃𝑆 intersect the line 𝑄0𝑆0.
Therefore, the segment 𝑄𝑆 does not intersect the line 𝑄0𝑆0. Thus this case is impossible.

Finally, none of the three cases (the last one has two subcases) is possible. This proves
the lemma. ∎
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So, the previous three lemmas show that the straight angle cannot appear with another
degeneracy. The following lemmas prove that the angle of measure 𝜋 cannot appear alone
as well.

Lemma 3.3.26 Suppose that the naming condition holds. For a generic point 𝐴 ∈ 𝑎 if
𝐵+ ≠ 𝐶+ and 𝐶+ ≠ 𝐷+, then none of the angles 𝛽+ and 𝛿+ equals 𝜋.

Proof Recall (see Remark 3.3.22) that for a generic point 𝐴 ∈ 𝑎 the inequalities 𝐵+ ≠
𝐶+ and 𝐶+ ≠ 𝐷+ imply that the limits 𝛽+, 𝛾+ and 𝛿+ exist. Also recall that due to
Lemma 3.3.24 the points 𝐵+, 𝐶+ and 𝐷+ are regular points of the respective curves.

Assume the converse, i. e. 𝛽+ = 𝜋 or 𝛿+ = 𝜋 for uncountably many points 𝐴 ∈ 𝑎. Due
to the symmetry it is sufficient to consider the case 𝛽+ = 𝜋. Note that 𝛼+ > 0 thus neither
𝛾+ nor 𝛿+ is equal to 𝜋 (it also follows from Lemma 3.3.23). Also note that for a generic
point 𝐴 ∈ 𝑎 the curve 𝑏 and the line 𝐴𝐵+ have only 2-point contact. Let us consider a
trajectory very close to 𝐴𝐵+𝐶+𝐷+, namely 𝐴𝐵𝛼𝐶𝛼𝐷𝛼 for 𝛼 = 𝛼+ − , ≪ 1.

Let us find the order of the length of the segment 𝐶+𝐶𝛼 in two ways, using the path
𝐴 → 𝐷 → 𝐶 and using the path 𝐴 → 𝐵 → 𝐶.

On the one hand, the angle 𝛿+ is not equal to 𝜋, thus both 𝐷𝛼 and the angle of incidence
𝛿𝛼/2 of 𝐴𝐷𝛼 depend smoothly on 𝛼 at 𝛼 = 𝛼+. Due to the inequality 𝛾 ≠ 𝜋, the point 𝐶𝛼
also depends smoothly on 𝛼, therefore 𝐶𝛼𝐶+ = 𝑂( ).

𝐴

𝐵𝛼 𝐵+

𝐵′
𝛼

𝐶 ′
𝛼

𝐶+

𝐶𝛼

𝐴𝐷𝛼𝐴𝐷+

∼ ∼

∼ √

∼ √

∼ √

∼

Figure 3.10 A limit trajectory with 𝛽+ = 𝜋, and another one close to the limit one

Recall that 𝐴 ≠ 𝐵+ and 𝐴𝐵+ has 2-point contact with 𝑏, thus 𝐵𝛼𝐵+ is of the order
√ . Therefore the angle between 𝐴𝐵+ and the tangent line to 𝑏 at 𝐵𝛼 is of the order √ .
Let us compute the angle between 𝐵𝛼𝐶𝛼 and 𝐵+𝐶+. The angle between 𝐴𝐵𝛼 and 𝐴𝐵+ is
equal to /2. Hence, the angle between 𝐴𝐵+ and the image of 𝐴𝐵𝛼 under the reflection
with respect to the line 𝐴𝐵+ equals /2. The line 𝐵𝛼𝐶𝛼 is the image of the same line 𝐴𝐵𝛼
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under the reflection with respect to the tangent line 𝑇𝐵𝛼
𝑏. The angle between these two

reflecting lines is of the order √ , therefore the angle between 𝐵𝛼𝐶𝛼 and 𝐴𝐵+ is of the
order √ .

Denote by 𝐵′
𝛼 the intersection point of the line 𝐵𝛼𝐶𝛼 and the perpendicular (𝑇𝐵+

𝑏)⟂

to 𝑏 at 𝐵+. Note that 𝐵′
𝛼𝐵+ is of the order . Indeed, the distance between 𝐵𝛼 and 𝐵+

is of the order √ , and the angle between 𝐵𝛼𝐶𝛼 and 𝐴𝐵+ is also of the order √ , hence
the distance between 𝐵′

𝛼 and the projection of 𝐵𝛼 to (𝑇𝐵+
𝑏)⟂ is of the order . On the

other hand, the distance between this projection and 𝐵+ is also of the order . Hence,
𝐵′

𝛼𝐵+ = 𝑂( ).
Denote by 𝐶′

𝛼 the intersection point of the mirror 𝑐 and the line parallel to 𝐴𝐶+ passing
through 𝐵′

𝛼. The angle between 𝑇𝐶+
𝑐 and 𝐵+𝐶+ is non-zero, thus the distance between 𝐶+

and 𝐶′
𝛼 is of the same order as 𝐵′

𝛼𝐵+, i. e. . Recall that 𝐵+ ≠ 𝐶+, therefore the distance
between 𝐶′

𝛼 and 𝐶𝛼 is of the same order as the angle between 𝐵𝛼𝐶𝛼 and 𝐵+𝐶+, i. e. √ .
Thus the distance 𝐶𝛼𝐶+ is of the order √ .

Finally, we have 𝐶𝛼𝐶+ ≳ √ and 𝐶𝛼𝐶+ ≲ at the same time which is impossible.
Therefore the angle 𝛽+ cannot be equal to 𝜋. Recall that due to the symmetry the angle 𝛿+
cannot be equal to 𝜋 as well. ∎

Lemma 3.3.27 Suppose that the naming convention holds. For a generic point 𝐴 ∈ 𝑎
if 𝐵+ ≠ 𝐶+ and 𝐶+ ≠ 𝐷+, then 𝛼+ ≠ 𝜋.

Proof Assume the converse, i. e. 𝐵+ ≠ 𝐶+, 𝐶+ ≠ 𝐷+ and 𝛼+ = 𝜋 for uncountably
many points 𝐴 ∈ 𝑎. Recall that due to Lemma 3.3.24 for a generic point 𝐴 the equality
𝛼+ = 𝜋 implies that the vertices of the quadrilateral 𝐴𝐵+𝐶+𝐷+ are regular points of the
corresponding mirrors. Moreover, due to Lemma 3.3.23 for a generic point 𝐴 ∈ 𝑎 the
equality 𝛼+ = 𝜋 implies that none of the angles 𝛽+, 𝛾+ and 𝛿+ is equal to 𝜋.

Let us fix a point 𝐴0 such that all the statements from the previous paragraph hold
for 𝐴0. There exists a neighborhood 𝐴0 ∈ 𝑈 ⊂ 𝑎 and a positive number > 0 such that
for any point 𝐴 ∈ 𝑈 and any angle 𝛼 ∈ (𝜋 − , 𝜋] the points 𝐵𝛼(𝐴), 𝐶𝛼(𝐴) and 𝐷𝛼(𝐴)
are well-defined regular points of the respective curves. Therefore the conditions of the
lemma (as well as the genericity conditions from the previous paragraph) hold also for all
points 𝐴 ∈ 𝑈. Let us replace 𝑈 with its subinterval such that the curvature of 𝑎 is non-zero
at all points of 𝑈.

Denote by 𝐴𝑠 the parametrisation of 𝑈 by the natural parameter such that the vector
𝑑𝐴𝑠

𝑑𝑠 is directed towards the point 𝐵𝜋(𝐴𝑠). Let us show that 𝐶𝜋(𝐴𝑠) does not depend on 𝐴𝑠.
To this end consider the families 𝐵𝑠 = 𝐵𝜋(𝐴𝑠), 𝐶𝑠 = 𝐶𝜋(𝐴𝑠), 𝐷𝑠 = 𝐷𝜋(𝐴𝑠), and let us
prove that 𝑑𝐶𝑠

𝑑𝐴𝑠 = 0. Let 𝑘𝑠 be the curvature of the mirror 𝑎 at a point 𝐴𝑠. We say that 𝑘𝑠

is positive if 𝑎 is locally inside the triangle 𝐵𝑠𝐶𝑠𝐷𝑠 and negative otherwise. Denote by 𝑙𝑠

the line tangent to 𝑎 at 𝐴𝑠, 𝑙𝑠 = (𝐵𝑠𝐷𝑠).
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Let us compute the derivative 𝑑𝐶𝑠

𝑑𝑠 in two ways: using the trajectory 𝐴 → 𝐵 → 𝐶, and
using the trajectory 𝐴 → 𝐷 → 𝐶.

Take a small number such that 𝑘𝑠 ⩾ 0. Note that the angle between the lines 𝑙𝑠

and 𝑙𝑠+ is equal to 𝑘𝑠 + 𝑜( ). Therefore, the angle between the rays 𝐴𝑠+ 𝐵𝑠+ and11

𝐴𝑠𝐵𝜋−2𝑘𝑠 (𝐴𝑠) is 𝑜( ) and the distance dist(𝐴𝑠, 𝑙𝑠+ ) is 𝑜( ) as well. Hence the length of
the segment 𝐵𝑠+ 𝐵𝜋−2𝑘𝑠 is 𝑜( ). Similarly, the angle between the reflected rays 𝐵𝑠+ 𝐶𝑠+

and 𝐵𝜋−2𝑘𝑠 (𝐴𝑠)𝐶𝜋−2𝑘𝑠 (𝐴𝑠) is 𝑜( ), and the initial point of the latter ray is 𝑜( )-close to
the former ray. Hence 𝐶𝑠+ = 𝐶𝜋−2𝑘𝑠 (𝐴𝑠) + 𝑜( ).

On the other hand, the line 𝐴𝑠𝐷𝜋−2𝑘𝑠 (𝐴𝑠) is “nearly parallel” to the line 𝑙𝑠− , not to
the line 𝑙𝑠+ . Therefore applying the same arguments to the path 𝐴 → 𝐷 → 𝐶 one can
show that 𝐶𝑠− = 𝐶𝜋−2𝑘𝑠 (𝐴𝑠) + 𝑜( ). Finally, 𝐶𝑠+ = 𝐶𝑠− + 𝑜( ) thus 𝑑𝐶𝑠

𝑑𝑠 = 0 and 𝐶𝑠

does not depend on 𝑠.
On the other hand, due to Lemma 3.3.25 the point 𝐶𝜋(𝐴) cannot be the same for un-

countably many points 𝐴 ∈ 𝑎. This contradiction proves the lemma. ∎

Lemma 3.3.28 Suppose that the naming convention holds. For a generic point 𝐴 ∈ 𝑎
if 𝐵+ ≠ 𝐶+ and 𝐶+ ≠ 𝐷+, then 𝛾+ ≠ 𝜋.

Proof Assume the converse, then for uncountably many points 𝐴 ∈ 𝑎, the points 𝐶+
does not coincide neither with 𝐵+, nor with 𝐷+, and 𝛾+ = 𝜋.

As in the previous lemma, let us choose 𝐴0 such that the limits 𝐵+, 𝐶+, 𝐷+ exist
and are regular points of the corresponding mirrors, 𝐴0 ≠ 𝐵+(𝐴0), 𝐵+(𝐴0) ≠ 𝐶+(𝐴0),
𝐶+(𝐴0) ≠ 𝐷+(𝐴0), 𝐷+(𝐴0) ≠ 𝐴0 and none of the angles 𝛼+, 𝛽+ and 𝛿+ equals 𝜋.

Let us also fix 𝛼0 close to 𝛼+ such that 𝛾𝛼0
is sufficiently close to 𝜋, fix a point 𝐶 =

𝐶𝛼0
and start augmenting the angle 𝛾. Obviously, the naming convention will hold for

this angular family as well. Note that the points 𝐵𝛾, 𝐴𝛾 and 𝐷𝛾 will not exit some small
neighborhoods of 𝐵+, 𝐴+ and 𝐷+, respectively. Hence, the points 𝐴+, 𝐵+ and 𝐷+ are
regular points of the corresponding curves, and 𝐶+ ≠ 𝐵+, 𝐵+ ≠ 𝐴+, 𝐴+ ≠ 𝐷+ and
𝐷+ ≠ 𝐶+. Therefore, the angle family 𝐴𝛾𝐵𝛾𝐶𝐷𝛾 extends to the angle 𝛾+ = 𝜋, which is
impossible due to Lemma 3.3.27. ∎

Proof of Proposition 3.3.21 This proposition follows immediately from Lemmas 3.3.26,
3.3.27 and 3.3.28. ∎

3.3.7 Reduction to the case of coinciding limits

In this subsection we will summarize the result of the previous subsections into the
following proposition.

11 The point 𝐵𝜋−2𝑘𝑠 (𝐴𝑠) is defined since 𝑘𝑠 ⩾ 0
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Proposition 3.3.29 Suppose that the naming convention holds. Then for a generic point
𝐴 ∈ 𝑎 the limits 𝐵+, 𝐶+, 𝐷+ exist and either 𝐵+ = 𝐶+, or 𝐶+ = 𝐷+.

Proof Recall that Lemma 3.3.11 states that for any point 𝐴 ∈ 𝑎 one of the following
cases holds.

1. At least one of the limits 𝐵+ = lim
𝛼→𝛼+

𝐵𝛼, 𝐶+ = lim
𝛼→𝛼+

𝐶𝛼 and 𝐷+ = lim
𝛼→𝛼+

𝐷𝛼 does not
exist.

2. 𝐴𝐵+𝐶+𝐷+ is a degenerate quadrilateral (see Definition 3.3.6).
3. At least two of the points 𝐵+, 𝐶+ and 𝐷+ are singular points of the corresponding

mirrors.

Due to Proposition 3.3.15, the first case holds for at most countable set of points 𝐴 ∈ 𝑎.
Hence, for a generic point either 𝐴𝐵+𝐶+𝐷+ is a degenerate quadrilateral, or at least two
points among 𝐵+, 𝐶+ and 𝐷+ are singular points of the respective curves.

Due to Lemma 3.3.20, for a generic point 𝐴 ∈ 𝑎 the third condition implies 𝐵+ = 𝐶+
or 𝐶+ = 𝐷+, hence for a generic point 𝐴 ∈ 𝑎 the quadrilateral 𝐴𝐵+𝐶+𝐷+ is degenerate.

Recall that a quadrilateral 𝐴𝐵+𝐶+𝐷+ is degenerate if either 𝐴 = 𝐵+, or 𝐵+ = 𝐶+,
or 𝐶+ = 𝐷+, or 𝐷+ = 𝐴, or one of the angles of this quadrilateral equals 𝜋. Due to
Proposition 3.3.15, the equalities 𝐴 = 𝐵+ and 𝐴 = 𝐷+ hold for at most countable set of
points 𝐴 ∈ 𝑎. Therefore, for a generic point 𝐴 ∈ 𝑎 either 𝐵+ = 𝐶+, or 𝐶+ = 𝐷+ or one
of the angles of 𝐴𝐵+𝐶+𝐷+ equals 𝜋.

Finally, Proposition 3.3.21 states that for a generic point 𝐴 ∈ 𝑎 the latter condition
(𝛼+ = 𝜋 or 𝛽+ = 𝜋 or 𝛾+ = 𝜋 or 𝛿+ = 𝜋) implies the first one (𝐵+ = 𝐶+ or 𝐶+ = 𝐷+).
Therefore, for a generic point 𝐴 ∈ 𝑎 either 𝐵+ = 𝐶+ or 𝐶+ = 𝐷+. ∎

3.3.8 Coinciding limits

This Subsection is devoted to the following statement.

Proposition 3.3.30 For a generic point 𝐴 ∈ 𝑎 neither 𝐵+ = 𝐶+ nor 𝐶+ = 𝐷+..

Proof Recall that for a generic point𝐴 these limits exist due to Lemmas 3.3.16 and 3.3.19.
Due to the symmetry in the naming convention, it is sufficient to show that 𝐵+ ≠ 𝐶+.

Note that the set of degenerate quadrilaterals splits the set of all quadrilaterals into two
connected components: convex quadrilaterals and concave ones. Therefore one connected
component of our two-dimensional family of non-degenerate quadrilateral trajectories can
contain only trajectories of one of these types, hence these cases can be considered sepa-
rately.
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Convex subcase Let us add one more assumption to the naming convention: 𝐴𝐵 +
𝐴𝐷 ⩽ 𝐵𝐶 + 𝐶𝐷. It is possible to satisfy this assumption at the initial moment because
of the symmetry between 𝐴 and 𝐶 in the earlier assumptions. On the other hand, due
to convexity of 𝐴𝐵𝐶𝐷, both 𝐴𝐵𝛼 and 𝐴𝐷𝛼 decrease on 𝛼, therefore the sum 𝑠(𝐴, 𝛼) =
𝐴𝐵𝛼 + 𝐴𝐷𝛼 also strictly decreases on 𝛼. Hence, the inequality 𝐴𝐵 + 𝐴𝐷 ⩽ 𝐵𝐶 + 𝐶𝐷
will remain true as 𝛼 increases. Let us choose an interval 𝑈 ⊂ 𝑎 and an angle 𝛼0 such that
𝑠(𝐴, 𝛼0) < 0.5 for all 𝐴 ∈ 𝑈. Then for any 𝐴 ∈ 𝑈 and 𝛼 ⩾ 𝛼0, 𝑠(𝐴, 𝛼) < 𝑠(𝐴, 𝛼0) < 0.5.

Due to the triangle inequality, for any 𝐴 ∈ 𝑈,

𝐵𝛼𝐶𝛼 ⩾ 𝐶𝛼𝐷𝛼 − 𝐵𝛼𝐷𝛼 = 1 − 𝑠(𝐴, 𝛼) − 𝐵𝛼𝐶𝛼 − 𝐵𝛼𝐷𝛼 ⩾ 1 − 𝐵𝛼𝐶𝛼 − 2𝑠(𝐴, 𝛼),

thus

𝐵𝛼𝐶𝛼 ⩾ 0.5 − 𝑠(𝐴, 𝛼) > 0.5 − 𝑠(𝐴, 𝛼0) > 0.

Hence, 𝐵𝛼𝐶𝛼 is bounded away from zero, thus 𝐵+𝐶+ > 0, and 𝐵+ ≠ 𝐶+.

Concave subcase In this case we cannot add the assumption 𝐴𝐵 + 𝐴𝐷 ⩽ 𝐵𝐶 + 𝐶𝐷
to the naming convention. Indeed, even if 𝐴𝐵𝛼0

+ 𝐴𝐷𝛼0
< 𝐵𝛼0

𝐶𝛼0
+ 𝐶𝛼0

𝐷𝛼0
, the left hand

side can increase on 𝛼, and the inequality can fail for some 𝛼 > 𝛼0. Therefore we will need
other arguments.

Suppose the contrary, 𝐵+ = 𝐶+ for uncountably many points 𝐴 ∈ 𝑎.
First, let us prove that for a generic point 𝐴 ∈ 𝑎 the equality 𝐵+ = 𝐶+ implies that

𝐵+ is a marked point. Indeed, 𝐵+ ∈ 𝑏 ∩ 𝑐, thus either 𝐵+ is a marked point, or 𝑏 = 𝑐 and
𝐵+ = 𝐶+ is a regular point of this curve. In the latter case 𝐴𝐵+ must be the tangent line
to 𝑏 at the point 𝐵+, thus the line 𝐴𝐵+ must coincide with the line 𝐶+𝐷+ and the angle
𝛼+ must be equal to zero. On the other hand, 𝛼+ > 𝛼0 > 0. This contradiction proves that
for a generic point 𝐴 the equality 𝐵+ = 𝐶+ implies that 𝐵+ is a marked point.

Therefore 𝐵+ = 𝐶+ is the same point 𝑋 for uncountably many points 𝐴. In the sequel,
only points 𝐴 from this set are studied.

Note that the limits of the tangent lines to the curves 𝑏 and 𝑐 as 𝐵 → 𝐵+ and 𝐶 → 𝐶+
either both exist or both do not exist. Indeed, the angle between the lines 𝐴𝐵𝛼 and 𝐶𝛼𝐷𝛼
is equal to 𝜋 − 2∠(𝑇𝐵𝛼

𝑏, 𝑇𝐶𝛼
𝑐). Hence, the limit of the angle between the tangent lines to 𝑏

and 𝑐 at 𝐵𝛼 and 𝐶𝛼 exists and equals 1
2 (𝜋 − ∠𝐴𝑋𝐷+). Hence either both limits lim

𝐵→𝐵+
𝑇𝐵𝑏

and lim
𝐶→𝐶+

𝑇𝐶𝑐 exist, or both of them do not exist.
Let us prove that for a generic point 𝐴 the equality 𝐵+ = 𝐶+ = 𝑋 implies that 𝐷+ is

a regular point of the curve 𝑑. Otherwise for uncountably many points 𝐴 both points 𝐵+
and 𝐷+ do not depend on 𝐴, therefore due to Lemma 3.3.17 the curve 𝑎 is an ellipse with
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foci 𝐵+ and 𝐷+. Due to the naming convention, either 𝑏 or 𝑑 is also an ellipse or a line.
But 𝐷+ is a singular point of the curve 𝑑, hence 𝑏 is an ellipse or a line. Therefore, the
limit of the tangent line to 𝑏 at 𝐵𝛼 as 𝛼 → 𝛼+ exists, as well as the limit of the tangent line
to 𝑐 at 𝐶𝛼. Thus the angle 𝐴𝑋𝐷+ = 𝜋 − 2∠(𝑇𝐵+

𝑏, 𝑇𝐶+
𝑐) does not depend on 𝐴. Hence the

line 𝐴𝑋 also does not depend on 𝐴, and the mirror 𝑎 intersects this line on uncountably
many points which is impossible. This contradiction proves that for a generic point 𝐴 the
equality 𝐵+ = 𝐶+ = 𝑋 implies that 𝐷+ is a regular point of the curve 𝑑.

Let us reduce the case when both limits lim
𝐵→𝐵+

𝑇𝐵𝑏 and lim
𝐶→𝐶+

𝑇𝐶𝑐 do not exist to the
case when both limits exist.

Lemma 3.3.31 Suppose that there exists an analytic 4-reflective billiard germ such that

• the quadrilateral 𝐴𝐵𝛼𝐶𝛼𝐷𝛼 is concave;
• for uncountably many points 𝐴 ∈ 𝑎 we have 𝐵+ = 𝐶+ and both limits lim

𝐵→𝐵+
𝑇𝐵𝑏 and

lim
𝐶→𝐶+

𝑇𝐶𝑐 do not exist.

Then there exists another analytic 4-reflective billiard germ such that for uncountably
many points 𝐴 ∈ 𝑎 we have 𝐵+ = 𝐶+ and both limits lim

𝐵→𝐵+
𝑇𝐵𝑏 and lim

𝐶→𝐶+
𝑇𝐶𝑐 exist.

Proof Note that for a generic 𝐴 ∈ 𝑎 such that 𝐵+ = 𝐶+, the angle 𝛼+ is less than 𝜋.
Indeed, due to the naming convention 𝑎 is not a line, hence for a fixed point 𝐵+ a generic
line 𝐴𝐵+ is not tangent to 𝑎. On the other hand, 𝐵+ belongs to at most countable set.
Therefore, for 𝛼 close enough to 𝛼+ the points 𝐵𝛼 and 𝐶𝛼 belong to the same half-plane
with respect to the line 𝐴𝐷𝛼. Therefore the line 𝐴𝐵𝛼 is not parallel to the line 𝐶𝛼𝐷𝛼 (recall
that 𝐴𝐵𝛼𝐶𝛼𝐷𝛼 is a concave quadrilateral), and their intersection point belongs to one of
the intervals 𝐴𝐵𝛼 or 𝐶𝛼𝐷𝛼.

Let us forget about the curves 𝑏 and 𝑐 and consider the space 𝑀3 of all non-degenerate
concave quadrilaterals 𝐴𝐵𝐶𝐷 such that 𝐴 ∈ 𝑎, 𝐷 ∈ 𝑑, 𝐴 ≠ 𝐷, 𝐴𝐵+𝐵𝐶+𝐶𝐷+𝐷𝐴 = 1,
the points 𝐵 and 𝐶 belong to the same half-plane with respect to the line 𝐴𝐷, and the
reflection law holds at the points 𝐴 and 𝐷. Denote by 𝑂 the intersection point of the lines
𝐴𝐵 and 𝐶𝐷.

A generic point of this space is determined by three parameters: two parameters de-
termine the locations of the points 𝐴 and 𝐷, and the third is the length of 𝐴𝐵. Indeed,
the point 𝐶 is uniquely defined by 𝐴, 𝐵 and 𝐷 unless 𝐵 = 𝑂. There are two minor prob-
lems with this coordinate system: it doesn't work if 𝐵 = 𝑂, and it is hard to express the
existence of the limit lim

𝐵→𝐵+
𝑇𝐵𝑏 in these coordinates.

To resolve these problems, we will consider the following coordinates on 𝑀3:

• the coordinates 𝑥𝐴, 𝑦𝐴, …, 𝑥𝐷, 𝑦𝐷 of the points 𝐴, 𝐵, 𝐶 and 𝐷;
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• the lengths 𝐴𝐵, 𝐵𝐶, 𝐶𝐷 and 𝐷𝐴.

Then our three-dimensional submanifold 𝑀3 of this 12-dimensional space ℝ12 is de-
fined by the following equations:

• 𝐴𝐵2 = (𝑥𝐵 − 𝑥𝐴)2 + (𝑦𝐵 − 𝑦𝐴)2, …, 𝐷𝐴2 = (𝑥𝐴 − 𝑥𝐷)2 + (𝑦𝐴 − 𝑦𝐷)2 (4 equations);
• 𝐴 ∈ 𝑎, 𝐷 ∈ 𝑑 (2 equations);
• the reflection laws at 𝐴 and 𝐷 (2 equations);
• 𝐴𝐵 + 𝐵𝐶 + 𝐶𝐷 + 𝐷𝐴 = 1;

and some analytic inequalities (𝐴𝐵 > 0 etc.).
Denote by 𝜔 the 1-form on ℝ12 that checks whether the point 𝐵 moves along the

exterior bisector of the angle 𝐴𝐵𝐶,

𝜔 =
(

𝑑𝐵,
−−→
𝐵𝐴
𝐵𝐴

+
−−→𝐵𝐶
𝐵𝐶)

= (
𝑥𝐴 − 𝑥𝐵

𝐴𝐵
+

𝑥𝐶 − 𝑥𝐵
𝐵𝐶 ) 𝑑𝑥𝐵 + (

𝑦𝐴 − 𝑦𝐵
𝐴𝐵

+
𝑦𝐶 − 𝑦𝐵

𝐵𝐶 ) 𝑑𝑦𝐵.

The restriction of 𝜔 to 𝑀3 defines two-dimensional distribution on 𝑀3. Due to Frobe-
nius Theorem, the distribution defined by 𝜔 is integrable on the submanifold 𝜔 ∧ 𝑑𝜔 = 0.
Obviously, our two-dimensional family of billiard trajectories is a surface tangent to this
distribution, hence it is contained in the submanifold 𝜔 ∧ 𝑑𝜔 = 0, thus the dimension of
the submanifold 𝜔 ∧ 𝑑𝜔 = 0 is either 2 or 3.

In the former case, the limit configuration is a singular point of an analytic surface,
hence both limits lim

𝐵→𝐵+
𝑇𝐵𝑏 and lim

𝐶→𝐶+
𝑇𝐶𝑐 exist, which contradicts the assumption.

Let us consider the latter case, 𝜔 ∧ 𝑑𝜔 ≡ 0 on 𝑀3. In this case the distribution Ker 𝜔
is integrable on 𝑀3, hence each quadrilateral 𝐴𝐵𝐶𝐷 ∈ 𝑀3 defines the unique integral
surface 𝜎 ⊂ 𝑀3 passing through this quadrilateral. Consider the maps

𝜋𝐵, 𝜋𝐶∶ 𝜎 → ℝ2, 𝜋𝐵∶ (𝐴, 𝐵, 𝐶, 𝐷) ↦ 𝐵, 𝜋𝐶∶ (𝐴, 𝐵, 𝐶, 𝐷) ↦ 𝐶.
Due to the definition of the form 𝜔, the images of these maps are 1-dimensional curves �̃�
and 𝑐 such that (𝑎, �̃�, 𝑐, 𝑑) is a 4-reflective billiard germ.

Now let us choose a quadrilateral 𝐴𝐵𝐶𝐷 ∈ 𝑀3 such that 𝐶𝐷 is small. Formally, let us
take a quadrilateral 𝐴0𝐵0𝐶0𝐷0 ∈ 𝑀3 such that 𝐴0 and 𝐷0 are regular points of the curves
𝑎 and 𝑑, respectively. Let 𝑂0 be the intersection point of the rays 𝐴0𝐵0 and 𝐷0𝐶0. Recall
that 𝐴0𝐵0𝐶0𝐷0 is a concave quadrilateral, hence the perimeter of the triangle 𝐴0𝑂0𝐷0 is
less than one. Therefore, for any point 𝐶 on the segment 𝐶0𝐷0 one can find the unique
point 𝐵 on the ray 𝐴0𝐵0 such that the perimeter of the quadrilateral 𝐴0𝐵𝐶𝐷0 equals one.
Let us choose a generic 𝐶1 on the interval 𝐶0𝐷0 very close to 𝐷0, and find the correspond-
ing point 𝐵1. Note that the points 𝐴0 and 𝐵1 belong to different half-planes with respect
to the line 𝐶1𝐷0 due to the perimeter inequality above.
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Now let us consider themirrors 𝑎, �̃�, 𝑐, 𝑑 corresponding to the quadrilateral𝐴0𝐵1𝐶1𝐷0.
It is easy to see that for a generic point 𝐶1 ∈ 𝐶0𝐷0 the mirrors 𝑎, �̃�, 𝑐, 𝑑 satisfy the naming
convention.

Let us choose a generic point𝐶 ∈ 𝑐 close to𝐶1 and consider the angle family𝐴𝛾𝐵𝛾𝐶𝐷𝛾,
𝛾 ∈ (𝛾−, 𝛾+). Due to the symmetry in the naming convention, this angle family also sat-
isfies the naming convention. Due to Proposition 3.3.29, either 𝐴+ = 𝐵+, or 𝐴+ = 𝐷+.
Note that the angle between the exterior bisector of the angle 𝐷0𝐶1𝐵1 and the tangent line
to 𝑑 at 𝐷0 tends to some non-zero value as 𝐶1 tends to 𝐷0. For 𝐶1 close enough to 𝐷0 and
𝐶 close enough to 𝐶1, all the points 𝐷𝛾 are close to 𝐷0, see the similar statement above.
The line 𝐶1𝐷0 separates the vertices 𝐴0 and 𝐵1, see the end of the paragraph before the
previous one. Therefore, the line 𝐶𝐷𝛾 separates the vertices 𝐴𝛾 and 𝐵𝛾 as well. Hence,
𝐴+ ≠ 𝐵+, so 𝐴+ = 𝐷+ for a generic point 𝐶 ∈ 𝑐. Recall that 𝐷𝛾 is close to 𝐷0, hence 𝐷+

is a regular point of the curve 𝑑, and the limit lim
𝐷→𝐷+

𝑇𝐷𝑑 exists. This proves the Lemma.

∎

Finally, there exists a 4-reflective billiard such that the naming convention holds, and
for uncountably many points 𝐴 ∈ 𝑎, 𝐵+ = 𝐶+ and both limits lim

𝐵→𝐵+
𝑇𝐵𝑏 and lim

𝐶→𝐶+
𝑇𝐶𝑐

exist. The point 𝐵+ = 𝐶+ is a marked point, therefore it is the same point 𝑋 for all points
𝐴 from some uncountable set 𝑉 ⊂ 𝑎.

For 𝐴 ∈ 𝑉, the angle 𝐴𝑋𝐷+ is equal to 𝜑 = 𝜋−2∠(𝑇𝐵+
𝑏, 𝑇𝐶+

𝑐), thus does not depend
on 𝐴. Therefore, the angle 𝐴𝑋𝐷+ equals 𝜑 for all points 𝐴 from some small neighborhood
𝑈 ⊂ 𝑎. Note that the point 𝐷+ is uniquely defined by the points 𝐴, 𝑋 and the angle 𝜑 (i. e.
no other information about the curves 𝑎, 𝑏, 𝑐 and 𝑑 is required to find 𝐷+). Indeed, 𝐷+
is the unique point such that ∠𝐴𝐵+𝐷+ = 𝜑 and 𝐵+𝐷+ + 𝐷+𝐴 = 1 − 𝐴𝐵+. Hence, the
tangent line 𝑇𝐴𝑎 depends only on 𝐴, 𝑋 and 𝜑. These tangent lines 𝑇𝐴𝑎 = 𝑇𝐴𝑎(𝐴, 𝑋, 𝜑)
form a line field, and 𝑎 is an integral curve of this line field. Clearly, the line field 𝑇𝐴𝑎 is
invariant with respect to the rotations around 𝑋.

The same arguments prove that 𝑑 is an integral curve of the image of this line field
under the symmetry with respect to a line passing through the point 𝑋. It is easy to show
that 𝑎 and 𝑑 are spirals making infinite number of turns around 𝑋.

Note that the map 𝛼 ↦ 𝐶𝛼 is not a constant for a generic point 𝐴 ∈ 𝑎. Indeed, if
𝐶𝛼 does not depend on 𝛼, then 𝑏 and 𝑑 are ellipses with foci 𝐴 and 𝐶𝛼. Hence, for any
other point 𝐴, the function 𝛼 ↦ 𝐶𝛼 is not a constant. Hence, we can choose 𝛼0 < 𝛼+ close
enough to 𝛼+ so that 𝐶𝛼0

is a generic point of the curve 𝑐.
Consider the angle family 𝐴𝛾𝐵𝛾𝐶𝐷𝛾 with fixed point 𝐶 = 𝐶𝛼0

.
Due to Proposition 3.3.29, either 𝐴+ = 𝐵+, or 𝐴+ = 𝐷+. If 𝐶𝛼0

is sufficiently close
to 𝑋, then 𝐵𝛾 is close to 𝑋 for all 𝛾𝛼0

< 𝛾 < 𝛾+, and the angle between the tangent line to 𝑐
at 𝐶 and the tangent line to 𝑏 at 𝐵𝛾 is close to the angle ∠(𝑇𝐵+

𝑏, 𝑇𝐶+
𝑐). Hence, the angle

𝐴𝛾𝑋𝐷𝛾 is close to 𝜑, thus positive, and 𝐴+ ≠ 𝐷+.
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Therefore, 𝐴+ = 𝐵+. On the other hand, 𝐷𝛾 cannot pass through the line 𝑇𝐶𝑐. Indeed,
otherwise at this moment the line 𝐶𝐷𝛾 will coincide with the tangent line 𝑇𝐶𝑐, hence the
angle 𝛾 will be equal to 𝜋, which is impossible due to Lemma 3.3.27. Therefore 𝐷𝛾 makes
less than one turn around 𝑋. The angle 𝐴𝛾𝑋𝐷𝛾 is close to 𝜑, thus 𝐴𝛾 makes less than two
turns around 𝑋. Therefore, 𝐴𝛾 cannot reach some small neighborhood of 𝑋, and 𝐴+ ≠ 𝐵+

for 𝐶 sufficiently close to 𝑋. This contradiction proves the Proposition.

3.3.9 Proof of the main theorem

Now Theorem 3.1.4 is an easy consequence of Propositions 3.3.29 and 3.3.30. Indeed,
due to Proposition 3.3.29 for a generic point 𝐴 the limits 𝐵+, 𝐶+ and 𝐷+ exist and either
𝐵+ = 𝐶+ or 𝐶+ = 𝐷+. On the other hand, due to Proposition 3.3.30 for a generic point 𝐴
neither 𝐵+ = 𝐶+ nor 𝐶+ = 𝐷+ . This contradiction completes the proof.

3.4 Further research

In this section we will discuss the case of 𝑘-gonal orbits, 𝑘 > 4. We want to use the
same strategy, i. e. consider an angle family 𝐴1𝐴𝛼1

2 …𝐴𝛼1
𝑘 , 𝛼1 = ∠𝐴𝑘𝐴1𝐴2, and study the

limit as the angle 𝛼1 tends to its maximal value 𝛼+
1 ⩽ 𝜋.

3.4.1 General case

The following straightforward generalization of Lemma 3.3.11 lists the possible cases
for the limit configuration.

Lemma 3.4.1 Consider a parametric family 𝐴1𝐴𝛼1
2 …𝐴𝛼1

𝑘 , where 𝐴1 is a regular point
of the corresponding mirror 𝛾1, 𝛼1 = ∠𝐴𝑘𝐴1𝐴2, 𝛼1 ∈ (𝛼−

1 , 𝛼+
1 ) ⊂ (0, 𝜋). Then one of the

following cases holds.

1. At least one of the limits 𝐴+
𝑖 = lim

𝛼1→𝛼+
1

𝐴𝛼1
𝑖 does not exist.

2. 𝐴1𝐴+
2 𝐴+

3 …𝐴+
𝑘 is a degenerate 𝑘-gon (see Definition 3.3.6).

3. At least two of the points 𝐴+
𝑖 are singular points of the corresponding mirrors.

It seems that this lemma lists the same obstructions as Lemma 3.3.11 but actually for
𝑘 > 4 there are much more possible combinations of these obstructions. Of course, some
of the lemmas developed for the case 𝑘 = 4 can be generalized for 𝑘 > 4, but they do not
cover all cases.

Let us list some difficulties that appear only for 𝑘 > 4.
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• Some of the limits 𝐴+
𝑖 do not exist.

• At least two of the angles 𝛼𝑖 are equal to 𝜋.
• One of the angles 𝛼+

𝑖 is equal to 𝜋 and one of the vertices 𝐴+
𝑖 is a singular point of the

respective curve.
• Two consequent vertices coincide, 𝐴+

𝑖 = 𝐴+
𝑖+1.

There are other cases (say, 𝐴+
2 = 𝐴+

3 and one of the angles 𝛼+
𝑖 is equal to 𝜋) but we

believe that the cases above are the most important.

3.4.2 Current status for 𝑘 = 5

As we stated above, the straightforward generalizations of our lemmas do not cover all
possible cases even for 𝑘 = 5. The cases that are not covered by these generalizations are
sketched in Figure 3.11. The vertices known to be marked points are indicated by small
empty circles, the vertices known to be regular (non-marked) points are indicated by small
black disks, and the points that can be either marked, or non-marked, are indicated by black
halfdisks.

One can prove that some of these cases are impossible. For the case of two straight
angles, this was proved by V. Kleptsyn. But explaining the ideas required to this proof
would take much space, and we still did not proved that all of these cases are impossible.
Some generalizations used for restricting the list of possible cases will be formulated in
the next subsection.

3.4.3 Straightforward generalizations

In this subsection we will formulate some straightforward generalizations of the lem-
mas used in this chapter. Since these lemmas do not lead immediately to any remarkable
result for 𝑘 > 4, we will not prove them.

Lemma 3.4.2 (cf. Lemma 3.3.13) Let {𝛾𝑖}𝑘
𝑖=1 be a 𝑘-reflective billiard germ. Then there

are at most 𝑘 − 3 straight lines among the mirrors 𝛾𝑖.

Lemma 3.4.3 (cf. Lemma 3.3.16) Suppose that 𝛾1 is not a straight line. Then for a
generic point 𝐴1 ∈ 𝛾1 the limits 𝐴+

2 and 𝐴+
𝑘 exist. If 𝑘 = 5, then either 𝐴+

2 ≠ 𝐴1, or
𝐴+

5 ≠ 𝐴1.

Lemma 3.4.4 (cf. Lemma 3.3.19) Let 𝑝 be a natural number, 3 ⩽ 𝑝 ⩽ 𝑘 − 1. For a
generic point 𝐴1 ∈ 𝛾1 the following implication holds. Suppose that the limit 𝐴+

𝑖 exists
for any 𝑖 ≠ 𝑝 and
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𝐴1

𝐴+
2

𝐴+
5

𝛾3

𝛾4

𝐴1

𝐴+
2

𝐴+
4

𝐴+
5

𝛾3

𝐴1

𝐴+
2

𝐴+
4 = 𝐴+

5

𝛾3

The limits 𝐴+
3 and

𝐴+
4 do not exist

The limit 𝐴+
3

does not exist
The limit 𝐴+

3 does
not exist, 𝐴+

4 = 𝐴+
5

𝐴1

𝐴+
2

𝐴+
3

𝐴+
4

𝐴+
5

𝐴1

𝐴+
2

𝐴+
3

𝐴+
4

𝐴+
5

𝐴1 𝐴+
2

𝐴+
3

𝐴+
4

𝐴+
5

𝛼+
2 = 𝛼+

5 = 𝜋 𝛼+
2 = 𝛼+

4 = 𝜋 𝛼+
3 = 𝛼+

1 = 𝜋

𝐴1

𝐴+
2

𝐴+
3

𝐴+
4

𝐴+
5

𝐴1

𝐴+
2

𝐴+
3

𝐴+
4

𝐴+
5

𝐴1 𝐴+
2

𝐴+
3

𝐴+
4

𝐴+
5

𝛼+
2 = 𝜋, 𝐴+

5 is a
singular point of 𝛾5

𝛼+
2 = 𝜋, 𝐴+

4 is a
singular point of 𝛾4

𝛼+
1 = 𝜋, 𝐴+

4 is a
singular point of 𝛾4

𝐴1 𝐴+
2

𝐴+
3

𝐴+
4

𝐴+
5

𝛼+
3 = 𝜋, 𝐴+

5 is a
singular point of 𝛾5

Figure 3.11 ‘Non-trivial' cases for 𝑘 = 5. Part 1.
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𝐴1

𝐴+
2 = 𝐴+

3 = 𝐴+
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𝐴+
4

𝐴+
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3
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4

𝐴+
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3 = 𝐴+
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2 , 𝛾1 = 𝛾2,
∠𝐴+

5 𝐴1𝐴+
3 = 𝜋

𝐴+
2 = 𝐴+

3 , 𝛼+
5 = 𝜋

𝐴1 𝐴+
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3 𝐴+
4

𝐴+
5

𝐴1 𝐴+
2

𝐴+
3 = 𝐴+

4

𝐴+
5 𝐴1

𝐴+
2𝐴+

3 = 𝐴+
4𝐴+

5

𝐴+
2 = 𝐴+

3 , 𝛾2 = 𝛾3,
∠𝐴1𝐴2𝐴4 = 𝜋

𝐴+
3 = 𝐴+

4 , 𝛼+
1 = 𝜋 𝐴+

3 = 𝐴+
4 , 𝛾3 = 𝛾4,

∠𝐴+
2 𝐴+

3 𝐴+
5 = 𝜋

𝐴1

𝐴+
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𝐴+
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2 = 𝐴+

3 , 𝐴+
4 = 𝐴+

5 𝐴+
3 = 𝐴+

4

Figure 3.12 ‘Non-trivial' cases for 𝑘 = 5. Part 2.
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1 − 𝐴1𝐴+
2 − 𝐴+

2 𝐴+
3 − … − 𝐴+

𝑝−2𝐴+
𝑝−1 − 𝐴+

𝑝+1𝐴+
𝑝+2 − … − 𝐴+

𝑘−1𝐴+
𝑘 − 𝐴+

𝑘 𝐴1 > 𝐴+
𝑝−1𝐴+

𝑝+1.

Then 𝐴+
𝑝 exists.

Notice that for 𝑘 ⩾ 5 these two lemmas do not imply existence of all the limits 𝐴+
𝑖 .

Lemma 3.4.5 (cf. Lemma 3.3.26) A tangency ∠𝐴1𝐴+
2 𝐴+

3 = 𝜋 cannot be the only ob-
struction to the analytic extension of the angle family, i. e. it is impossible that all the
following conditions hold:

• the limit 𝐴+
𝑖 exists for any 𝑖 = 2, …, 𝑘;

• 𝐴+
𝑖 ≠ 𝐴+

𝑖+1 for 𝑖 = 2, …, 𝑘 − 1, 𝐴+
𝑘 ≠ 𝐴1, 𝐴1 ≠ 𝐴+

2 ;
• ∠𝐴+

𝑖−1𝐴+
𝑖 𝐴+

𝑖+1 ≠ 𝜋 for 𝑖 = 3, …, 𝑘 − 1, ∠𝐴+
𝑘−1𝐴+

𝑘 𝐴1 ≠ 𝜋, ∠𝐴+
𝑘 𝐴1𝐴+

2 ≠ 𝜋;
• each limit 𝐴+

𝑖 is a regular point of the corresponding curve;
• ∠𝐴1𝐴+

2 𝐴+
3 = 𝜋.
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