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NO PLANAR BILLIARD POSSESSES AN OPEN SET OF QUADRILATERAL
TRAJECTORIES
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ABSTRACT. The article is devoted to a particular case of Ivrii’s conjecture on
periodic orbits of billiards. The general conjecture states that the set of peri-
odic orbits of the billiard in a domain with smooth boundary in the Euclidean
space has measure zero. In this article we prove that for any domain with
piecewise C 4-smooth boundary in the plane the set of quadrilateral trajecto-
ries of the corresponding billiard has measure zero.
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1. INTRODUCTION

1.1. Main results. Given a domain Ω ⊂ Rm with (piecewise) smooth boundary,
consider the billiard dynamical system which describes the trajectories of a par-
ticle (a billiard ball) moving inside this domain. The ball moves along straight
lines inside Ω and reflects against the boundary of Ω by the standard reflection
law.

Formally, the phase space of this system is the set of pairs (x, v), where x ∈ ∂Ω
is a point of reflection and v , ‖v‖ = 1 is velocity of the ball at this point (a unit
vector directed towards the interior of the domain Ω). The billiard map sends
a pair (x, v) to the pair (x ′, v ′), where x ′ is the first point along the ray { x + t v |
t ∈ (0,+∞) } that belongs to the border ∂Ω and v ′ is the speed of the ball after
reflection.

This article is devoted to a particular case of the following long-standing prob-
lem.

CONJECTURE 1 (V. Ivrii, 1978). Given a domain in the Euclidean space with suf-
ficiently smooth boundary, the set of periodic orbits of the corresponding billiard
has measure zero.

More precisely, we study the set of pairs (x, v) such that the orbit of (x, v) under
the billiard map is finite.

Ivrii’s conjecture was proved by D.Vassiliev in the following particular cases:

1. the boundary ∂Ω is convex and globally regular analytic [20];
2. the boundary ∂Ω is piecewise smooth and concave, and the result applies

to the case, whenΩ is a polyhedron [21].

In 1988 V. Petkov and L. Stojanov [13] proved a stronger version of Ivrii’s conjec-
ture for a typical domain with smooth boundary. Namely, for a typical domain
with smooth boundary the set of periodic orbits of a given period is at most fi-
nite.

Clearly, it is sufficient to prove that for every k the set Perk of k-gonal orbits
has measure zero. For k = 2, this statement is trivial. For triangular trajectories in
a planar billiard (i. e., a billiard inΩ⊂R2), this statement was proved by M. Rych-
lik [16]. Part of his proof is computer-assisted and uses MACSYMA program.
Later Rychlik’s result was proved in a simple and geometric way by L. Stojanov
[19]. Later M. Wojtkowski [24] found another simple proof, and Ya. Vorobets [22]
generalized the Rychlik’s result to higher dimensions. Later Yu. Baryshnikov and
V. Zharnitsky [4] have found yet another proof of Rychlik’s result.

We will show that the set of quadrilateral periodic orbits of a planar billiard
has measure zero.
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THEOREM 2. For every planar billiard with piecewise C 4 smooth boundary, the
set Per4 has measure 0.

In what follows, µ denotes the Lebesgue measure on the billiard phase space
(i. e., the set of pairs (x, v) described above).

Obviously, Theorem 2 is implied by the two following theorems.

THEOREM 3. Suppose that there exists a planar billiard Ω ⊂ R2 with C 4-smooth
boundary such that µPer4 > 0. Then there exists a planar billiard with piecewise
analytic boundary such that the set Per4 has an inner point.

THEOREM 4. For any planar billiard with piecewise analytic boundary, the set
Per4 has no inner points.

We shall prove Theorem 3 in Section 2, and Theorem 4 in Section 3. The proof
of the former Theorem heavily uses Pfaffian systems theory, namely Birkhoff dis-
tribution. As far as we know, Baryshnikov and Zharnitsky [4] were first who used
this approach to Ivrii’s conjecture.

We also formulate the following conjecture.

CONJECTURE 5. There exists a function r = r (k,m) such that the following holds.
If there exists a billiard inRm with piecewise C r -smooth boundary such thatµPerk >
0, then there exists a billiard inRm with piecewise analytic boundary such that the
set Perk has an inner point in the space of all orbits.

We will deduce this conjecture from Conjecture 25 (see Section 2.3), which is
very close to Cartan–Kuranishi–Rashevsky Theorem. Namely, we shall prove the
following theorem.

THEOREM 6. Conjecture 25 implies Conjecture 5.

REMARK 7. There exists a problem similar to Ivrii’s Conjecture in theory of invis-
ible mirror systems. For more details see [1, 14].

1.2. From Weyl to Ivrii. Though Conjecture 1 is a pure billiard theory question,
it appeared as a geometrical condition in the following PDE problem.

Consider the Dirichlet problem for the Laplace operator ∆ in some domain
Ω ⊂ Rm . The Laplace operator ∆ is a negatively-determined self-adjoint oper-
ator, therefore its eigenvalues with the Dirichlet boundary condition u|∂Ω = 0
are negative real numbers 0 > −λ2

1 > −λ2
2 > · · ·> −λ2

k > . . . Denote by N (λ) the
number of the eigenvalues −λ2

i such that λ2
i <λ2, that is,

N (λ) = k ⇐⇒ λk <λ6λk+1.

QUESTION. What is the asymptotic behaviour of the function N (λ)?

H. Weyl [23] proved that N (λ) is asymptotically proportional to λm , where m
is the dimension ofΩ.

THEOREM 8 (H. Weyl, [23], 1911). Let Ω ⊂ Rm be a domain such that µ(Ω) <∞
and µ(∂Ω) = 0. Then

N (λ) = c0µ(Ω)λm +o(λm),

where c0 = (2π)−m wm and wm stands for the volume of m-dimensional unit ball.
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After proving this theorem, Weyl obtained more precise asymptotics of the
function N (λ) forΩ= [a1,b1]×·· ·× [am ,bm]. It turns out that in this case

(1) N (λ) = c0µ(Ω)λm − c1µ
′(∂Ω)λm−1 +o(λm−1),

where c1 = 1
4 (2π)m−1ωm−1, andµ′ is the (m−1)-dimensional measure. Weyl con-

jectured that the same formula holds for every domain Ω⊂ Rm with sufficiently
(piecewise) smooth boundary.

Many mathematicians, including R. Courant [6], B. Levitan [3], V. Avakumovič
[2], L. Hörmander [9, 10], J. Duistermaat, V. Guillemin [7], R. Seeley [18] and
V. Ivrii contributed to the proof of this conjecture. The best result was achieved
by V. Ivrii [11], who proved Weyl’s conjecture for domains satisfying an additional
geometric condition.

THEOREM 9 (V. Ivrii, 1980). Let Ω be a domain in Rm with infinitely smooth
boundary. Suppose that in the corresponding billiard the set of periodic orbits
has measure zero. Then forΩ, the asymptotic formula (1) holds.

This geometric condition is analogous to the condition that appears in the
same problem for Riemannian manifolds without border. In [8, Theorem 2.1]
N. Filonov and Y. Safarov estimated the difference between N (λ) corresponding
to the Dirichlet problem and N (λ) corresponding to the Neuman problem for
domains that do not satisfy this condition. In the latter case we should require
the set of closed geodesics to have zero measure.

The following story was given from Ivrii’s presentation for graduate students.

In 1980 V. Ivrii gave a talk in Ya. Sinai’s seminar (Moscow State
University) — one of the best seminars on billiards, and he con-
jectured (see Conjecture 1) that this geometric condition holds
for every domain in the Euclidean space with sufficiently smooth
boundary. He was told that this conjecture will be proven in a
couple of days. . . in a week. . . in a month. . . in a year. . .

The conjecture still stands!
As we have noted above, the case of triangular orbits was studied by M. Rychlik

[16], L. Stojanov [19] and Ya. Vorobets [22]. We study the case of quadrilateral
trajectories in planar billiards.

2. REDUCTION TO THE ANALYTIC CASE

2.1. Pfaffian systems. Definitions. Let M be an n-dimensional analytic man-
ifold. Let F be a d-dimensional analytic distribution on M , i. e. F (x) is a d-
dimensional subspace of Tx M for every x ∈ M and the map x 7→F (x) is analytic.

DEFINITION 10. An l-dimensional surface U ⊂ M is called integral for F if TxU ⊂
F (x) for every x ∈ S.

A germ φ : (Rl ,0) → M , rkdφ= l is called integral for F if Imdφ(x) ⊂F (φ(x))
for ‖x‖ sufficiently small.

An r -jet φ : (Rl ,0) → M , rkdφ= l is called integral for F if for every 1-form ω

that vanishes on F , ω(x)|F (x) = 0, the reverse image (φ∗ω)(x) is zero (r −1)-jet.
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REMARK 11. If φ is an integral r -jet, then for every 1-form ω that vanishes on
F the reverse image (φ∗dω)(x) is zero (r −2)-jet. If φ is an integral germ, then
φ∗dω= 0.

DEFINITION 12. A subspace E ⊂ Tx M is called integral for F if for every 1-form
ω that vanishes on F we have ω|E = 0 (i. e., E ⊂F (x)) and dω|E = 0.

DEFINITION 13. An analytic pfaffian system is a tuple (M ,F , l ), where M is an
analytic manifold, F is an analytic distribution on M and l ≤ dimF is a natural
number. The problem is to find all l-dimensional analytic integral surfaces of
the distribution F .

We will need to study not only analytic integral surfaces of a distribution, but
we will also be interested in finitely-smooth surfaces which are tangent to the
distribution at sufficiently many points.

DEFINITION 14. Let F be an analytic distribution on M , U ⊂ M be a C 1-smooth
submanifold. Let V ⊂U be given by V = {x ∈U | TxU ⊂F (x)}, µ be the Lebesgue
measure on U . We will say that U is a pseudo-integral surface for F if µ(V ) > 0.

2.2. The distribution corresponding to Ivrii’s problem for fixed m and k. Fix
the number of vertices k, k > 3, and the dimension m ofΩ, m = dimΩ≥ 2.

Denote by A1, A2, . . . Ak the vertices of a trajectory of the billiard map. Let A0 :=
Ak , Ak+1 := A1. We will be interested only in k-gonal trajectories that are non-
degenerate in the following sense.

DEFINITION 15. A k-tuple of points A1, . . . , Ak ∈ Rm is called a non-degenerate
k-gon if

• consequent vertices do not coincide, i. e. Ai 6= Ai+1 for i = 1, . . . ,k;
• none of the angles is equal to π, i. e. ∠Ai−1 Ai Ai+1 6=π for i = 1, . . . ,k.

Otherwise this k-tuple is called a degenerate k-gon.

Let us explain why it is natural to require a periodic billiard orbit to be a non-
degenerate k-gon. If Ai = Ai+1, then the reflection law at the vertices Ai and
Ai+1 makes no sense. If ∠Ai−1 Ai Ai+1 = π, then the billiard map is not smooth

at (Ai−1,
−−−−−→
Ai−1 Ai
Ai−1 Ai

); moreover, if the line Ai−1 Ai+1 and the germ of the boundary ∂Ω
at Ai have 2-point contact, then there exists a ray arbitrarily close to Ai−1 Ai that
does not intersect the border ∂Ω near Ai .

REMARK 16. Suppose that Ai−1 6= Ai , the border ∂Ω is C r -smooth at the points
Ai−1 and Ai , and the ray Ai−1 Ai is transversal to the border ∂Ω at the point Ai .

Then the germ of the billiard map at the point (Ai−1,
−−−−−→
Ai−1 Ai
Ai−1 Ai

) is C r−1-smooth. If
the line Ai−1 Ai is transversal to the border ∂Ω at the point Ai−1 as well, then this
germ has C r−1-smooth inverse.

Clearly, the space of all non-degenerate k-gons is an open subset of Rmk .
Consider a billiard table Ω ⊂ Rm , and take a periodic non-degenerate orbit

A1 . . . Ak . The tangent space to the set of k-gons with vertices in ∂Ω at A1 . . . Ak
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is the Cartesian product of tangent hyperplanes TAi ∂Ω. Due to the reflection
law, TAi∂Ω is the exterior bisector of ∠Ai−1 Ai Ai+1 for every i = 1, . . . ,k, hence
the k(m − 1)-dimensional space F (A1, . . . , Ak ) = ⊕k

i=1 TAi∂Ω is the same for all
domainsΩ⊂Rm such that A1 . . . Ak is a periodic trajectory for the corresponding
billiard.

Thus we obtain a k(m −1)-dimensional distribution F = Fk,m on the space
of all non-degenerate k-gons in Rm . This distribution plays the key role in our
proof. To formulate precise statements, we will need the following definition.

DEFINITION 17. We will say that an integral r -jet (germ) φ of the distribution
Fk,m is non-trivial if for every i = 1, . . . ,k the composition of φ with the projec-
tion πi : (A1, . . . , Ak ) 7→ Ai has rank m −1.

We will say that an integral surface U ⊂ Rmk is non-trivial if the germ of U at
almost every point of U is non-trivial.

We will say that U ⊂ Rmk is a non-trivial pseudo-integral surface for F if V
in Definition 14 can be choosen so that the germ of U at every point x ∈ V is
non-trivial.

The following two lemmas show that there is a strong connection between bil-
liard tables with “large” set of k-gonal orbits and non-trivial 2(m−1)-dimensional
integral surfaces of the distribution F .

LEMMA 18. Suppose that there exists a domain Ω ⊂ Rm with C r -smooth bound-
ary such that µPerk > 0. Then the distribution F possesses a non-trivial pseudo-
integral C r−1-smooth surface U ⊂Rmk .

Proof. Broadly speaking, it is sufficient to choose U to be the set of billiard tra-
jectories of length k and V to be the set of Lebesgue points of the set Perk . The
formal construction follows.

Let M̃ be the phase space of the billiard corresponding toΩ. Then M̃ is a (2m−
2)-dimensional C r−1-smooth manifold. The billiard map B : M̃ 99K M̃ is a C r−1

map defined almost everywhere on M̃ (see Remark 16). Moreover, rkdB(x, v) =
2m −2 at every point (x, v) in the domain of B.

Consider the map π : M̃ 99K Rmk that sends each pair (A1, v) to the corre-
sponding billiard trajectory A1 . . . Ak of length k. Let (A0

1, v0) ∈ Perk be a Lebesgue
point of the set Perk ⊂ M̃ . Let A0

1 A0
2 . . . A0

k = π(A0
1, v0) be the corresponding pe-

riodic trajectory. Definitions of Perk and B imply that the polygon A0
1 A0

2 . . . A0
k is

non-degenerate, and the vertices of this polygon are non-singular points of the
boundary ∂Ω.

Let Ũ ⊂ M̃ be a neighborhood of (A0
1, v0) such that

• for every (A1, v) ∈ Ũ the polygon A1 A2 . . . Ak = π(A1, v) is non-degenerate
and the vertices Ai are non-singular points of the boundary ∂Ω;

• the restriction π|Ũ is a diffeomorphism onto its image.

Then the maps Bi , i = 1, . . . ,k, have rank 2m −2 at every point of Ũ .
Let Ṽ be the set of Lebesgue points of the set Perk ∩Ũ . Let us show that these

U =π(Ũ ) and V =π(Ṽ ) satisfy the assertion of the lemma.
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For every (A1, v) ∈ Perk ∩Ũ the tangent space to U at π(A1, v) is a subspace of
F (π(A1, v)), therefore for every (A1, v) ∈ Ṽ the (r − 1)-jet of U at π(A1, v) is an
integral jet for the distribution F .

It remains to verify the non-triviality condition. This condition immediately
follows from the equality rkBi = 2m −2.

LEMMA 19. Suppose that there exists an analytic non-trivial integral surface for
F . Then there exists a domain Ω ⊂ Rm with piecewise analytic boundary such
that the set Perk has an inner point.

REMARK 20. Let us show that one cannot omit the non-triviality condition. In-
deed, for m = 2 and k = 4 for every X ,Y ∈R2 and s > X Y the family

{(X , A2,Y , A4) | X A2 + A2Y = X A4 + A4Y = s }

is a (trivial) two-dimensional integral surface of F that does not correspond to
any billiard table.

Proof. Let U be a non-trivial 2(m−1)-dimensional analytic integral surface of F .
Since U is non-trivial, the images of U under the projections πi (see Definition
17) are (m−1)-dimensional analytic submanifolds. LetΩ⊂Rm be a domain such
that for every i the germ of ∂Ω at Ai is πi (U ). Clearly, every polygon A1 . . . Ak ∈U
is an inner point of the set Perk forΩ.

2.3. Cartan prolongations and Cartan–Kuranishi–Rashevsky Theorem. Cartan
[5] defined a prolongation for pfaffian systems on fibrations. To describe this
construction in our settings, we will need to slightly modify the definition of a
pfaffian system.

DEFINITION 21. A pfaffian system with transversality conditions is a pair of a
pfaffian system (M ,F , l ) and a tuple of distributions Fi on M . The problem is
to find an integral surface U for (M ,F , l ) such that TxU is transversal to each
Fi (x), i.e.

dim(TxU ∩Fi (x)) = max(0, l +dimFi −n).

REMARK 22. One can easily show that the non-triviality condition (see Defini-
tion 17) is a transversality condition.

Let (M ,F , l , {Fi }) be a pfaffian system with transversality conditions. Con-
sider the grassmanian Grl (T M) = {(x,El ) | El ∈ Grl (Tx M)}. Consider the analytic
distribution F̃ on Grl (T M) given by F̃ (x,El ) = El ×T(x,El ) Grl (Tx M). Clearly, for
every l-dimensional surface U ⊂ M , its lifting Ũ = {(x,TxU ) | x ∈U } is an integral
surface for this distribution.

Denote by M̃ ⊂ Grl (T M) the set of pairs (x,El ) such that El ⊂ Tx M is an inte-
gral plane for (M ,F , l ) transversal to all Fi . Clearly, M̃ is an analytic subset of
Grl (T M), hence M̃ is a stratified manifold. Generally speaking, the dimension
of the intersection F̃ ∩Tx M̃ may depend on x ∈ M̃ . Let us subdivide strata of
M̃ so that dim(F̃ ∩Tx M ′) = const for every stratum M ′ ⊂ M̃ . Due to the defi-
nition of F̃ , this condition implies that the restriction of the natural projection
π : Grl (T M) → M to each stratum has constant rank.
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Then for every integral surface U ⊂ M for F we have Ũ ⊂ M̃ , and T(x,El )Ũ is
transversal to the plane d x = 0. This motivates the following definition.

DEFINITION 23. Let (M ,F , l , {Fi }) be a pfaffian system with transversality con-
ditions. Let M ′ be a stratum of the stratification described above, let F ′ be the
restriction of F̃ to M ′, F ′(x) = F̃ ∩Tx M ′. The system P ′ = (M ′,F ′, l , {d x = 0}) is
called first Cartan prolongation of the original system.

THEOREM 24 (E. Cartan [5], M. Kuranishi [12], P. Rashevsky [15]). Let P = (M ,F , l , {Fi })
be a pfaffian system with transversality conditions. Suppose that P has no ana-
lytic integral surfaces. Consider a sequence of pfaffian systems P (r ) = (M (r ),F (r ), l , {F (r )

i }),

such that P (r+1) is a prolongation of P (r ), P (0) =P . Then there exists r0 depend-
ing on P and on {P (i )} such that M (r0) =∅.

CONJECTURE 25. There exists an estimate for r0 that does not depend on F and
the sequence of prolongations, but depends only on dim M.

We are pretty sure that this result must be known in pfaffian systems theory
for ages, but we have failed to find a reference. Moreover, it seems that this result
can be deduced from the detailed analysis of the proof of the main theorem in
[15]. Later we will either publish a short report with a reference, or the proof of
this result.

2.4. Reduction to a Cartan–Kuranishi–Rashevsky like theorem. In this subsec-
tion we will prove Theorem 6, i. e. reduce Conjecture 5 to Conjecture 25. The
following theorem is the only statement we need to complete the proof.

THEOREM 26. Let P = (M ,F , l , {Fi }) be an analytic pfaffian system with transver-
sality conditions, r ≥ 1. Suppose that P has a C r+1-smooth pseudo-integral sur-
face U . Then there exists an r -th prolongation P (r ) = (M (r ),F (r ), l , {F (r )

i }) of P

such that M (r ) 6=∅.

Before proving this theorem, let us deduce Theorem 6 from it and prove an
auxiliary lemma.

Proof of Theorem 6. Fix natural numbers k and m. Suppose that there does not
exist a billiard with piecewise analytic boundary such that Perk has an inner
point. Due to Lemma 19, the corresponding pfaffian system with transversal-
ity conditions has no analytic integral surfaces. Therefore, due to Conjecture
25, there exists r = r (k,m) such that all r -th prolongations of Fk,m are pfaf-
fian systems on the empty set. Due to Theorem 26, Fk,m has no C r+1-smooth
pseudo-integral surfaces. Finally, due to Lemma 18, there does not exist a do-
mainΩ⊂Rm with piecewise C r+2-smooth boundary such thatµPerk (Ω) > 0.

The following lemma will be used twice in the proof of Theorem 26.

LEMMA 27. Let U be a C 2-smooth pseudo-integral surface for an analytic pfaffian
system (M ,F , l ). Let V be as in Definition 14. Then for every Lebesgue point x of
V the tangent plane TxU is integral for F .
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Proof. Letωbe an analytic 1-form that vanishes on the planes of F . Letϕ : (R l ,0) →
(U , x) be a C 2-smooth local coordinate system on U . Then the pullback ϕ∗ω is
a C 1-smooth 1-form on a neighborhood of the origin. Since ω(y) vahishes on
F (y) for every y ∈ V , the pullback ϕ∗ω vanishes on Rl at every point of ϕ−1(V ).
Clearly, the origin is a Lebesgue point of ϕ−1(V ), hence d(ϕ∗ω)(0) = 0. Thus
dω(x)|TxU = 0.

Proof of Theorem 26. The proof is by induction on r .
Inductive base, r = 1. The statement follows immediately from Lemma 27.
Inductive step. Let U be a C r+2-smooth pseudo-integral surface for F . Broadly

speaking, the surface Ũ = {(x,TxU ) | x ∈ U } is a C r+1-smooth pseudo-integral
surface for the first prolongation of P . This will allow us to apply the inductive
assumption to the first prolongation of the original system.

More precisely, put Ũ = {(x,TxU ) | x ∈ U }, Ṽ = {(x,TxU ) | x ∈ V }. Let M̃ ⊂
Grl (T M) be the set of integral planes for P .

Due to Lemma 27, Ṽ ⊂ M̃ . Let M ′ ⊂ M̃ be a stratum of M̃ such that the
intersection Ṽ ∩ M ′ has positive l-dimensional Lebesgue measure. Let P ′ =
(M ′,F ′, l , {F ′

i }) be the prolongation of P to M ′. Shrinking V (hence, Ṽ ) if re-
quired, we can and will assume that Ṽ ⊂ M ′ and every point of Ṽ is a Lebesgue
point of Ṽ (as a subset of Ũ ).

Consider a point p0 = (x0,Tx0U ) ∈ Ṽ ⊂ M ′, and choose a small neighborhood
Û ⊂ Ũ of p0 such that the orthogonal projection σ : Û → M ′ is well-defined. Put
V ′ = Û ∩ Ṽ . Since V ′ ⊂ M ′, σ|V ′ = id. Since p0 is a Lebesgue point of V ′, the
tangent space Tp0 M ′ includes Tp0Û , hence the restriction σ|Tp0Û is an embed-

ding. Therefore, σ has rank l in a small neighborhood of p0. Denote by U ′ the
image σ(Û ). Then Û ∩U ′ ⊃ V ′, and for every point p ∈ V ′ we have TpU ′ = TpÛ .
Therefore, U ′ is a C r+1-smooth pseudo-integral surface for F ′.

Due to the inductive assumption, there exists an r -th prolongation P (r+1) of
the prolongation of P to M ′ such that M (r+1) 6=∅. Since P (r+1) is an (r +1)-st
prolongation of P , this completes the proof.

The following theorem allows us to calculate fewer prolongations if we need
to ensure that the existence of a smooth pseudo-integral surface imply the exis-
tence of an analytic integral surface.

THEOREM 28. Let P = (M ,F , l , {Fi }) be an analytic pfaffian system with transver-
sality conditions, r ≥ 1. Suppose that P has a C r+1-smooth pseudo-integral sur-
face U and all non-empty r -th prolongations of P are l -dimensional distribu-
tions. Then P has an analytic integral surface.

Proof. The proof is by induction on r . The inductive step is completely analo-
gous to the inductive step in the proof of Theorem 26. Let us prove the inductive
base.

Let r = 1. Let U be a C 2-smooth integral surface for P . Let us introduce V , Ũ ,
Ṽ , M̃ , M ′, U ′ and F ′ as in the proof of inductive step of Theorem 26. Without

JOURNAL OF MODERN DYNAMICS VOLUME 1, NO. SUBMITTED (2007), 1–40



10 A. GLUTSYUK AND YU. KUDRYASHOV

loss of generality, we assume that Ũ ⊂ M ′. One can achieve this by an orthogonal
projection, see the proof of Theorem 26.

Consider the natural projection π : M ′ → M . Recall that F ′(x,El ) is the pull-
back of El ⊂ Tx M under π. Since dimF ′(x,El ) = l = dimEl , the map π is an
immersion.

Fix a point (x0,Tx0U ) ∈ Ṽ and its neighborhood W̃ ⊂ M ′ such that π|W̃ is a
smooth embedding. Set W = π(W̃ ). By definition, shrinking U one can achieve
that U ⊂ W . Choose a branch of π−1|W such that π−1(x0) = Tx0U . Denote by F̂

the distribution on W given by (x,F̂ (x)) =π−1(x). Clearly, F̂ is an l-dimensional
analytic distribution and U is a pseudo-integral surface for F̂ . The planes of F̂

are integral planes for F .
Now we can apply the standard procedure from Frobenius Theorem. Since

F̂ is an l-dimensional distribution, for every x ∈ W either F̂ (x) is an integral
plane for F̂ , or there are no integral planes for F̂ in TxW . Denote by W ′ the
submanifold defined by the condition “F̂ (x) is an integral plane for F”. Due to
Lemma 27, V ⊂W ′. Let W ′′ ⊂W ′ be the submanifold defined by “F̂ (x) ⊂ TxW ′”,
let W (3) ⊂W ′′ be given by “F̂ (x) ⊂ TxW ′′”, etc., W (∞) =⋂

i W (i ).
Recall that V ⊂ W ′, thus TxU ⊂ TxW ′ for every x ∈ V , hence V ⊂ W ′′, etc.

Therefore, V ⊂ W (∞). Thus, W (∞), being an intersection of a decreasing se-
quence of analytic manifolds W (i ), contains a stratum W0 of maximal dimension
of some manifold W ( j ), and dimW0 ≥ l . The restriction F̂ |W0 satisfies assump-
tions of Frobenius Theorem, hence it possesses an analytic integral surface U an .
Clearly, this integral surface is an integral surface for F as well.

2.5. Explicit estimate for the required smoothness. In this section we shall prove
Theorem 3. LetΩ⊂R2 be a domain with C 4-smooth boundary such thatµPer4 >
0. Due to Lemma 18, there exists a non-trivial pseudo-integral C 3-smooth sur-
face U ⊂R8 for F4,2(x). Let us prove that all second prolongations of F4,2(x) are
2-dimensional distributions. This will allow us to apply Theorem 28.

Ai

Ai−1

Ai+1
αi

ei−1

ei

ei +ei−1

ei −ei−1

−ei−1

Li−1
Liei−1

FIGURE 1. Notation for the proof of Theorem 3

Notation. Let Li be the length of Ai Ai+1

Li = Ai Ai+1.
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QUADRILATERAL TRAJECTORIES IN PLANAR BILLIARDS 11

Next, let ei be the normalized vector
−−−−−→
Ai Ai+1; let e⊥i be the image of ei under the

rotation through π/2,

ei =
−−−−−→
Ai Ai+1

Li
; e⊥i = Rπ/2ei .

Let αi be the angle at Ai ; let ti be the tangent of αi /2,

αi =∠Ai−1 Ai Ai+1; ti = tan
(αi

2

)
.

Denote by θi and νi the following 1-forms,

θi = (ei −ei−1,d Ai ); νi = (e⊥i ,d Ai ).

Here (·, ·) means dot product of a vector and a vector-valued 1-form.
Clearly, F4,2 is defined by θ1 = θ2 = θ3 = θ4 = 0. The 1-forms νi form a coordi-

nate system on the planes of F4,2.

First prolongation of F4,2. Consider a non-degenerate quadrilateral A1 A2 A3 A4.
Let E4 be the subspace F4,2(A1 A2 A3 A4) ∈ TA1 A2 A3 A4R

8. Some of the equalities
below will hold only if one restricts both sides of the equality to E4. We shall

write A F∼ B instead of A|E4 = B |E4 .

Since θi
F∼ 0,

(e⊥i−1,d Ai ) F∼−(e⊥i ,d Ai ) =−νi ;(2)

(ei ,d Ai ) F∼ (ei−1,d Ai ) F∼ ti (e⊥i ,d Ai ) = tiνi ;(3)

dLi = (d
−−−−−→
Ai Ai+1,ei ) = (d Ai+1,ei )− (d Ai ,ei ) F∼ ti+1νi+1 − tiνi(4)

Let us compute dei and de⊥i . Since ‖ei‖ ≡ 1,

(5) dei =
e⊥i (d

−−−−−→
Ai Ai+1,e⊥i )

Li
= e⊥i

Li

(
(d Ai+1,e⊥i )− (d Ai ,e⊥i )

) F∼−e⊥i
Li

(νi+1 +νi ).

The last equality holds due to (2). Thus

(6) de⊥i = (dei )⊥ F∼ ei

Li
(νi +νi+1).

In the sequel we will use the following notation,

(α ∧, β) =αx ∧βx +αy ∧βy ,

where α= (αx ,αy ) and β= (βx ,βy ) are vector-valued differential forms.
Now, we will compute d(ei ,d Ai ) and d(ei−1,d Ai ), then dθi .

(7) d(ei ,d Ai ) = (dei
∧, d Ai ) F∼

(
−e⊥i

Li
(νi+1 +νi ) ∧, d Ai

)

= (e⊥i ,d Ai )

Li
∧ (νi +νi+1) = νi

Li
∧ (νi +νi+1) = νi ∧νi+1

Li
.
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12 A. GLUTSYUK AND YU. KUDRYASHOV

(8) d(ei−1,d Ai ) = (dei−1
∧, d Ai ) F∼

(
− e⊥i−1

Li−1
(νi−1 +νi ) ∧, d Ai

)

= (e⊥i−1,d Ai )

Li−1
∧ (νi−1 +νi ) = −νi

Li−1
∧ (νi−1 +νi ) = νi−1 ∧νi

Li−1
.

Subtracting (8) from (7), we obtain

(9) dθi
F∼ νi ∧νi+1

Li
− νi−1 ∧νi

Li−1
.

Recall that a 2-dimensional plane E2 ⊂ E4 is called integral for F4,2 if dθi |E2 = 0
for i = 1, . . . ,4. Substituting (9), we get

θ1|E2 = θ2|E2 = θ3|E2 = θ4|E2 = 0;

ν1 ∧ν2

L1

∣∣∣∣
E2

= ν2 ∧ν3

L2

∣∣∣∣
E2

= ν3 ∧ν4

L3

∣∣∣∣
E2

= ν4 ∧ν1

L4

∣∣∣∣
E2

=:ω(10)

for every integral plane E2 ⊂ TA1 A2 A3 A4R
8.

Consider a non-trivial integral plane E2. Due to the non-triviality condition,
we have ω|E2 6= 0, thus one can find a basis in E2 of the form(

0 L1 u1 u2

L1 0 u3 u4

)
.

Due to (10),
−L2

1

L1
= L1u3

L2
= u1u4 −u2u3

L3
= u2L1

L4
,

hence u3 = −L2, u2 = −L4 and u1u4 = L2L4 −L1L3. Therefore, E2 has a basis of
the form

(11)

(
0 L1 η −L4

L1 0 −L2 η′
)

where η and η′ are real numbers such that ηη′ = L2L4 −L1L3.
The plane E2 is defined by

(12)
L1ν3 =−L2ν1 +ην2;

L1ν4 = η′ν1 −L4ν2.

Now we are ready to describe the first Cartan prolongation of F4,2.
Let M9 ⊂R8×Gr2(R8) be the phase space of the first prolongation, i. e., the set

of pairs (A1 A2 A3 A4,E2) such that A1 A2 A3 A4 is a non-degenerate quadrilateral
and E2 is a non-trivial integral plane for F4,2. This set is defined by ηη′ = L2L4 −
L1L3 in the 10-dimensional submanifold of R8×Gr2(R8) given by (11). Therefore,
dim M9 = 9.

The first prolongation F ′ of F4,2 is given by (12). It is easy to see that F ′ is a
3-dimensional distribution on M9.

Consider the projection of M9 to R8. The preimage of each non-degenerate
quadrilateral is either a hyperbola ηη′ = L2L4 −L1L3 6= 0, or a pair of lines ηη′ =
L2L4 −L1L3 = 0. For this reason, we will treat these strata separately.
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QUADRILATERAL TRAJECTORIES IN PLANAR BILLIARDS 13

The stratum L1L3 = L2L4. Denote by M7 ⊂ R8 the 7-dimensional manifold de-
fined by L1L3 = L2L4. Let us find the first prolongation of the restriction of F4,2

to M7. Clearly, E2 ⊂ TA1 A2 A3 A4R
8 is an integral plane for this restriction if and

only if A1 A2 A3 A4 ∈ M7 , E2 is an integral plane for F4,2 and E2 ⊂ TA1 A2 A3 A4 M7.
Since L1L3 = L2L4, we have η= 0 or η′ = 0. These cases are analogous to each

other, so we will consider only the latter one.
The condition E2 ⊂ TA1 A2 A3 A4 M7 means that the form d(L2L4−L1L3) vanishes

on both basis vectors of E2. Substituting formulas (4) for dLi , we get

(t2ν2 − t1ν1)L3 + (t4ν4 − t3ν3)L1 = (t3ν3 − t2ν2)L4 + (t1ν1 − t4ν4)L2;

Let us evaluate both sides on the basis vectors (11) and substitute η′ = 0. We get

η= L1(t2 − t4)(L3 +L4)

t3(L4 +L1)
;

t3 = t1.

Therefore, there is at most one integral plane for F4,2|M7 passing through each
point of M7. Namely, there is a unique integral plane if t1 = t3, and no integral
planes otherwise. Thus the first prolongation of the restriction of F4,2 to M7 is
a 2-dimensional distribution. Therefore, all second prolongations of this restric-
tions are 2-dimensional distributions as well.

Second prolongation of F4,2 over the main stratum L1L3 6= L2L4. Since η 6= 0, (12)
can be rewritten as

(13)
ην2 = L1ν3 +L2ν1;

ην4 =−L3ν1 −L4ν3.

In order to compute the differentials of both sides of (13), we will need the
following “wedge multiplication table” for νi ,

(14)
ν1 ∧ν3

F ′∼ ηω; ν1 ∧ν2
F ′∼ L1ω; ν1 ∧ν4

F ′∼ −L4ω;

ν2 ∧ν4
F ′∼ −η′ω; ν2 ∧ν3

F ′∼ L2ω; ν3 ∧ν4
F ′∼ L3ω.

Here A F ′∼ B means A|E3 = B |E3 for every plane E3 of F ′.
The equalities with ±Liω on the right-hand side follow from the definition

(10) of ω. The first and the fourth equalities follow from (12).
Let us compute dνi ,

(15) dνi = d(e⊥i ,d Ai ) = (de⊥i ∧, d Ai ) F∼
(

ei

Li
(νi +νi+1) ∧, d Ai

)
= (νi +νi+1)∧ (ei ,d Ai )

Li

F∼ (νi +νi+1)∧ tiνi

Li
=− tiνi ∧νi+1

Li

F∼−tiω.
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14 A. GLUTSYUK AND YU. KUDRYASHOV

A plane E ′
2 ⊂ F ′(x) is integral for F ′ if and only if the exterior derivatives of

(13) hold on E ′
2. Let us find exterior derivatives of the right hand sides of (13).

d(L1ν3 +L2ν1) F ′∼ (t2ν2 − t1ν1)∧ν3 −L1t3ω+ (t3ν3 − t2ν2)∧ν1 −L2t1ω

F ′∼ (t2L2 − t1η−L1t3 − t3η+ t2L1 − t1L2)ω=: A(Li ; ti ;η)ω

d(−L3ν1 −L4ν3) F ′∼ (t3ν3 − t4ν4)∧ν1 +L3t1ω+ (t4ν4 − t1ν1)∧ν3 +L4t3ω

F ′∼ (−ηt3 −L4t4 +L3t1 −L3t4 − t1η+L4t3)ω=: B(Li ; ti ;η)ω.

Therefore, an integral plane E ′
2 of F ′ is given by

(dη∧ν2)|E ′
2
= ((A(Li ; ti ;η)+ηt2)ω)|E ′

2
;

(dη∧ν4)|E ′
2
= ((B(Li ; ti ;η)+ηt4)ω)|E ′

2
.

Since (ν2 ∧ ν4)|E ′
2
6= 0, these equations define an unique plane E ′

2 ⊂ F ′(x).
Therefore, the second prolongation of F4,2 over the main stratum is a 2-dimensional
distribution.

Finally, all second prolongations of F4,2 are 2-dimensional distributions, and
F4,2 has a C 3-smooth non-trivial pseudo-integral surface. Due to Theorem 26,
F4,2 has an analytic non-trivial integral surface. Thus, due to Lemma 19, there
exists a planar billiard with piecewise analytic boundary such that Per4 has an
inner point. This completes the proof of Theorem 3.

3. ANALYTIC CASE

3.1. Conventions and strategy of the proof. Recall that our aim is to prove that
there does not exist a planar billiard Ω with piecewise analytic boundary such
that the set Per4 has an inner point.

Clearly, the property of being an inner point of the set Perk is local, i. e. this
property depends only on the germs of the boundary ∂Ω at the vertices of the
trajectory. This motivates the following definitions.

DEFINITION 29. Let γ1,γ2, . . . ,γk : R→R2 be analytic curves. A k-tuple of points
A1 A2 . . . Ak is called a billiard trajectory for the k-tuple of mirrors γ1, . . . ,γk if Ai ∈
γi and the reflection law holds.

We will need to apply this definition for the case when some of the vertices Ai

are singular points of the respective mirrors γi . Thus we introduce the following
convention.

CONVENTION 30. Let γ(t0) be a singular point of an analytic curve γ. We will say
that l is the tangent line to γ at γ(t0) if

l = lim
t→t0

Tγ(t )γ.

In particular, we say that there exists the tangent line at a cusp singular point.
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QUADRILATERAL TRAJECTORIES IN PLANAR BILLIARDS 15

DEFINITION 31. A k-reflective billiard germ is a k-tuple of germs of nonconstant
analytic maps γi : (R,0) → (R2, Ai ) such that

• Ai 6= Ai+1 for i = 1, . . . ,k−1, Ak 6= A1 (otherwise the reflection law makes no
sense);

• the reflection law with respect to the γi holds at the Ai , i = 1, . . . ,k;
• A1 A2 . . . Ak is an inner point of the set Perk of k-gonal billiard orbits.

Clearly, the following statement implies Theorem 4.

THEOREM 32. There does not exist an analytic 4-reflective billiard germ.

We will prove this theorem instead of Theorem 4. In this subsection we will
only give an idea of the proof, and the rest of this section is devoted to the de-
tailed proof.

Assume the converse. Then there exists a 4-reflective analytic billiard germ
(a,b,c,d). Let ABC D = a(0)b(0)c(0)d(0) be the corresponding periodic trajec-
tory.

We can extend the mirrors and the families of periodic trajectories analyti-
cally. Our strategy will consist in extending the mirrors and the family of periodic
trajectories sufficiently far to obtain a contradiction.

Namely, Lemma 41 lists the possible obstructions to analytic extension of a
family of 4-periodic trajectories with fixed base vertex A ∈ a. Then Proposi-
tion 45, Lemma 50, Proposition 51 and Proposition 60 show that each of these
cases holds for at most countable set of base vertices in a. On the other hand,
the curve a is uncountable. This contradiction will complete the proof.

3.2. First observations for k-gonal trajectories. There are at least three types of
objects that one can call a curve: a subset of the plane, a map γ : R→ R2 and a
map γ : R→R2 modulo reparametrization.

CONVENTION 33. Everywhere in this article an analytic curve is a non-constant
analytic mapγ : U →R2, U ⊂R is an interval, modulo a bianalytic reparametriza-
tion. In particular,

• a germ of a curve at a self-intersection point is a germ of one of its irre-
ducible branches passing through this point, not a germ of the union of
these branches;

• a self-intersection point is not a singular point provided that all branches
are regular curves.

We say that a curve γ1 : R→ R2 contains a curve γ2 : R→ R2, if there exists an
analytic mapping h :R→R such that γ2 = γ1 ◦h.

We shall also use the following convention.

CONVENTION 34. If an analytic curve has a limit either in the forward direction,
or in the reverse direction, we will attach these limits to the curve and consider
them to be singular points of the resulting curve.
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16 A. GLUTSYUK AND YU. KUDRYASHOV

As we noted above, we will study analytic extensions of the initial germs. Clearly,
these extensions can intersect existing billiard trajectories, so we need to modify
the definition of a billiard trajectory.

REMARK 35. In a family of k-periodic billiard trajectories, the vertices of the
polygon A1 . . . Ak move in the directions of the exterior bisectors of the angles
of this polygon, therefore its perimeter is a constant. We may and will assume
that this constant is equal to one, A1 A2 +·· ·+ Ak−1 Ak + Ak A1 = 1.

One of the possible obstructions to the analytic extension of a family of pe-
riodic trajectories is degeneracy of the limit trajectory. Recall the definition of a
non-degenerate k-gon (we just replace m by 2 in Definition 15).

DEFINITION 36. A k-tuple of points A1, . . . , Ak ∈ R2 is called a non-degenerate
k-gon if

• consequent vertices do not coincide, i. e. Ai 6= Ai+1 for i = 1, . . . ,k;
• none of the angles is equal to π, i. e. ∠Ai−1 Ai Ai+1 6=π for i = 1, . . . ,k.

Otherwise this k-tuple is called a degenerate k-gon.

A k-gon such that Ai = Ai+1 for some i is an obstruction to the extension be-
cause the reflection law at Ai makes no sense for such polygons. A k-gon such
that ∠Ai−1 Ai Ai+1 = π is an obstruction to the extension because if, say, the line
Ai−1 Ai+1 and the mirror γi have 2-point contact at Ai , then there exists a ray
arbitrarily close to Ai−1 Ai that does not intersect γi near Ai .

Some degenerate and non-degenerate quadrilaterals are shown in Figure 2.

3.3. Start of the proof of Theorem 32. Assume the converse. Then there exists
an analytic 4-reflective billiard germ (a,b,c,d). Let us replace these germs by
their maximal analytic extensions.

More precisely, given a germ γ : (R,0) → R2 we will replace it by a curve γ̃

that contains (in the sense of Convention 33) the maximal analytic extension
(as a map R→R2) of any analytic reparametrization of γ. This is possible due to
the following lemma. This fact should be known for ages but we have not found
any reference.

LEMMA 37. Every germ γ : (R,0) → R2 of a real curve admits a unique maxi-
mal analytic extension. Namely, there exists an analytic map γ̃ : U → R2, U ⊂
R that contains (in the sense of Convention 33) the maximal analytic extension
of every analytic reparametrization of γ. The map γ̃ is unique up to bianalytic
reparametrization.

First, we will prove the local analogue of this lemma.

PROPOSITION 38. For every germ of curve γ : (R,0) 7→ (R2, A) there exists a univer-
sal germ of curve that contains every analytic parametrization of the given germ

γ. If s is the natural parameter of the germ γ, then one can choose t = s
1
p as a

parameter of the universal germ for appropriate p ∈N.
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A = DB

C

A DB

C

Degenerate: A = D Degenerate: ∠A =π

A = B

D

C A
B

C

D

Degenerate: A = B , ∠C =π Non-degenerate

A = C B

D

A BC

D

Non-degenerate because A and C
are not consecutive vertices

Non-degenerate: ∠B is zero, not π

FIGURE 2. Degenerate and non-degenerate quadrilaterals ABC D

Proof. It is well-known that every germ of complex analytic curve admits a local
injective parametrization (called also local uniformization), unique up to a bian-
alytic reparametrization. If the curve under consideration is real, then the local
uniformization can be chosen real. Moreover, any other analytic parametriza-
tion of the germ of curve is the composition of the uniformization and a (not
necessarily injective) change of parameter, i.e., the given germ is contained in
the uniformization in the sense of Convention 33.

In appropriate coordinates in R and R2 such that A = 0, the local uniformiza-
tion of the germ γ has the type t 7→ (γ1(t ),γ2(t )) = (t p ,ct q (1+φ(t ))), 0 < p < q ,
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18 A. GLUTSYUK AND YU. KUDRYASHOV

c 6= 0, where φ is a germ of analytic function, φ(0) = 0. We have:

(16) s(t ) =
∫ t

0
‖γ̇(τ)‖dτ=

∫ t

0

√
γ̇2

1(τ)+ γ̇2
2(τ)dτ=

∫ t

0
τp−1χ(τ)dτ,

where χ(t ) = p +O(t ) is a germ of analytic function, by the previous formula for
γ j . Thus, the right-hand side in (16) is analytic and equal to t p (1+O(t )). This
completes the proof.

Proof of Lemma 37. The uniqueness of maximal analytic extension follows from
definition. Let us prove its existence.

Consider the unit speed parametrization γ̄0 of γ near the origin,

γ̄0(s) = γ(t (s)), s(t ) =
∫ t

0
‖γ̇(τ)‖dτ,

and replace γ̄0 by its maximal analytic extension γ̄1.
Next we construct a sequence of continuous curves γ̄i , i ∈ N, such that ev-

ery γ̄i is analytic at all but at most finite set of points, ‖γ̇i‖ = 1 at every regular
point, and the curve γ̄i+1 contains γ̄i . Namely, if one (or both) of the endpoints
of the curve γ̄i is a cusp, then we extend γ̄i beyond this endpoint (resp., both
endpoints) till the next singular point. If the curve γ̄i has no limit or tends to
infinity in some direction, then we cannot and do not extend it in this direction.
The extended curve thus obtained will be denoted γ̄i+1.

Let γ̄∞ be the union of all these curves γ̄i . Recall that a germ of every ana-
lytic curve at every singular point in the interior of the domain of the curve is a
cusp (we do not count self-intersection points due to Convention 33). Thus γ̄∞
includes (as a set) analytic extension of every analytic reparametrization of γ1

Now we only need to find an analytic parametrization γ̃ of the curve γ̄∞.
Note that for every parameter value si corresponding to a cusp there exists

a natural number pi (given by Proposition 38) such that the curve γ̃i : t 7→ γ̄∞(si + t pi )
is analytic at t = 0 and contains every germ of its analytic reparametrization.
Thus we can change the analytic structure near each point si so that γ̄∞ will
become an analytic map from an abstract analytic one-dimensional manifold
to the plane. Indeed, it is sufficient to use pi

p
s − si as a new chart near si . Any

contractible abstract analytic one-dimensional manifold is analytically equiva-
lent to the real line. Hence, there exists a surjective coordinate map s from R

to the definition domain of the curve γ̄∞ equipped with the above structure of
analytic manifold. The curve γ̃ : R → R2, γ̃(τ) = γ̄∞(s(τ)) is analytic, and it is
a maximal analytic extension of the curve γ.

We will approach the border of the set Per4 along the angle families A = const,
α increases. Formally, fix some initial 4-reflective trajectory ABC D . Let us fix the
vertex A and start increasing the angle α = ∠B AD . Due to the 4-reflectivity of
the initial billiard germ, we will obtain a small 1-parametric family ABαCαDα of

1A priori, the curve γ̄∞ thus constructed may need an infinite number of extensions and may
be an infinite union of the curves γ̄i . This means that curve γ̄ contains an infinite number of
cusps. In this case it cannot be extended analytically beyond an infinite number of cusps, since
every germ of analytic curve either is regular, or has isolated cusp at the base point.
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QUADRILATERAL TRAJECTORIES IN PLANAR BILLIARDS 19

quadrilateral billiard trajectories. Consider the analytic extension of this family
to the maximal possible interval (α−,α+) ⊂ (0,π), i. e. we do not try to extend the
family beyond α= 0 and α=π.

Clearly, the curves b, c and d contain the curves α 7→ Bα, α 7→Cα and α 7→ Dα,
respectively.

REMARK 39. The vertices Bα, Cα and Dα can be singular points of the respective
curves for some values of α ∈ (α−,α+).

NOTATION. Denote byβα, γα andδα the angles∠ABαCα,∠BαCαDα and∠CαDαA,
respectively. Denote by B+, C+, D+, β+, γ+ and δ+ the limits (if they exist) of Bα,
Cα, Dα, βα, γα and δα as α→α+, respectively.

The 4-reflectivity is an analytic condition, hence all trajectories ABαCαDα are
4-reflective. Formally, consider the fourth power of the billiard map, that is, the
map of four successive reflections against the border. Since the initial trajectory
is 4-reflective, this map is the identity map in some neighbourhood of the initial

pair (A,
~AB

AB ). On the other hand, this map is analytic. Thus its analytic extension
along the family of trajectories ABαCαDα is the identity map, hence all trajecto-
ries ABαCαDα are 4-reflective.

The following notion will be used in some proofs to consider the similar cases
together.

DEFINITION 40. Let γ1, γ2, . . . , γk be analytic curves. We say that a point X is a
marked point if it is either a singular point of one of these curves γi (including
the limits attached to γi due to the previous convention), or a self-intersection
point of one of the curves γi , or an intersection point of two different curves.

We would like to underline that “two different curves” in this definition means
that even if for some i 6= j the curves γi and γ j coincide, we do not mark all the
points of γi . Thus, the set of marked points is at most countable.

The following lemma provides us the list of possible obstructions to the ana-
lytic extension of an angle family.

LEMMA 41. For any initial quadrilateral one of the following cases holds.

1. At least one of the limits B+ = limα→α+ Bα, C+ = limα→α+ Cα and D+ = limα→α+ Dα

does not exist.
2. AB+C+D+ is a degenerate quadrilateral (see Definition 36).
3. At least two of the points B+, C+ and D+ are singular points of the corre-

sponding mirrors2.

Proof. Assume the converse, then for some initial quadrilateral

• the limits B+, C+ and D+ exist;
• the quadrilateral AB+C+D+ is non-degenerate;
• at most one of the points B+, C+, D+ is a singular point of the correspond-

ing mirror.

2Recall that due to Convention 33 a self-intersection point is not a singular point provided that
all the branches passing through this point are regular curves.
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Without loss of generality we can assume that B+ is a regular point of b, and
either C+ or D+ is a regular point of c or d , respectively. Then we can easily
extend the family Bα to some bigger interval. Note that the rays BαCα and ADα

are uniquely determined by A, α and Bα. Indeed, the line BαCα is the image of
the line ABα under the symmetry with respect to the tangent line to b at Bα, and
the ray ADα is the ray starting from A in the known direction.

Consider two cases.
Case I. C+ is a regular point of c, then Cα can be extended to a bigger interval

as the intersection point of the ray BαCα and the curve c. Hence, we can define
the ray CαDα for α close enough to α+ (including the values of α greater than
α+). Therefore we can define Dα as the intersection point of the rays CαDα and
ADα. Due to the inequality δ+ 6=π, for α sufficiently close toα+ this intersection
point exists, is unique and analytically depends on α. Finally, we can extend
the family ABαCαDα to a bigger interval, which contradicts the assumption that
(α−,α+) is the maximal interval. Therefore, this case is impossible.

Case II. D+ is a regular point of d , then Dα can be extended to a bigger in-
terval as the intersection point of the ray ADα and the curve d . Hence, we can
define the ray DαCα for α close enough to α+ (including the values of α greater
than α+). Let us define Cα as the intersection point of the rays DαCα and BαCα.
Due to the inequality γ+ 6= π, this intersection point exists, is unique and ana-
lytically depends on α. Finally, we can extend the family ABαCαDα to a bigger
interval, which contradicts the assumption that (α−,α+) is the maximal interval.
Therefore, this case is also impossible.

Finally, both cases are impossible. This completes the proof of the lemma.

It is convenient to choose which vertex to fix. In order to avoid renaming of
the mirrors in the middle of the proof, we will now rename the mirrors so that
the following convention holds.

CONVENTION 42 (Naming convention). We say that a 4-reflective billiard germ
(a,b,c,d) with marked mirror a satisfies the naming convention if

1. neither a nor c is a line;
2. If a or c is an ellipse, then b or d is a nonsingular curve.

Note that it is possible to rename the mirrors so that the naming convention
will hold unless at least two of the mirrors are straight lines. Indeed, if one of
the mirrors is a line, let us rename the mirrors so that b is a line, and the nam-
ing convention will be satisfied; otherwise, none of the mirrors is a straight line,
thus the first condition holds automatically, and it is easy to satisfy the second
condition.

LEMMA 43. At most one of the mirrors a, b, c, d is a straight line.

The following elegant proof was given by V. Kleptsyn.

Proof. Assume that at least two of the curves a, b, c and d are lines. Let us con-
sider two cases.
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(a) The mirrors a and b are straight lines (b) The mirrors a and c are straight lines

FIGURE 3. Two mirrors are straight lines

Case I. The curves a and b are straight lines (see Fig. 3 (a)). Let us fix a point
D ∈ d and consider a small angle family AδBδCδD . Denote by D ′ the image of
the point D under the reflection with respect to the line a. Denote by D ′′ the
image of the point D ′ under the reflection with respect to the line b. Then for
every C ∈ c,

DC +C D ′′ = DC +D ′B +BC = DC +D A+ AB +BC = 1.

Thus c is an ellipse with foci D and D ′′ for every D ∈ d . Therefore all points of the
curve d are the foci of the same ellipse which is impossible. Therefore this case
is impossible.

Case II. The curves a and c are lines (see Fig. 3 (b)). Let us fix a point B ∈ b and
consider a small angle family AβBCβDβ. Denote by B ′ and B ′′ the images of the
point B under the reflection with respect to the lines a and c, respectively. Then
for every D ∈ d ,

B ′D +B ′′D = B A+ AD +BC +C D = 1.

Thus d is an ellipse with foci B ′ and B ′′ for every B ∈ b which is impossible.
Therefore this case is also impossible.

Finally, at most one of the curves a, b, c and d is a line.

Later we will say “for a generic point A ∈ a” instead of “for a generic point
A ∈ a for every angle family corresponding to this point”. In this article we use
rather strong notion of genericity.

CONVENTION 44. We say that some property holds for a generic point A ∈ a, if it
holds for all but at most countable set of points A ∈ a.

The next subsections deal with the cases from Lemma 41 one by one and show
that these cases hold for at most countable set of points A ∈ a. Hence there exists
a point of the mirror a that satisfies none of these cases, but this contradicts
Lemma 41. This contradiction will complete the proof.
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FIGURE 4. Oscillating curve b

3.4. Existence of the limits. In this Subsection we will prove the following propo-
sition.

PROPOSITION 45. Suppose that the naming convention holds. Then for a generic
point A ∈ a the limits B+, C+ and D+ exist, B+ 6= A and D+ 6= A.

In Lemma 46 we will prove that the limits B+ and D+ exist and do not coincide
with A, and in Lemma 49 we will show that the limit C+ exists as well.

LEMMA 46. Suppose that a is not a straight line. Then for a generic point A ∈ a
the limits B+ and D+ exist, B+ 6= A and D+ 6= A.

Proof. First, let us prove that for a generic point A ∈ a, the limits B+ and D+ exist.
Due to the symmetry between B and D it is sufficient to show that the limit B+
exists.

Assume the converse. Then the limit B+ does not exist for uncountably many
points A ∈ a. Take a point A ∈ a such that the limit B+ does not exist, see Figure 4.
Note that the line ABα is uniquely defined by A and α. Therefore this line tends
to some limit position l as α→α+,

l = lim
α→α+

(line ABα).

Recall that the perimeter of the quadrilateral ABαCαDα is one, hence Bα belongs
to the unit disk centered at A. Therefore, dist(Bα, l ) tends to zero as α tends to
α+.

Since the curve b can oscillate along at most two lines (say, l1 and l2), the
limit B+ exists for every point A ∈ a, A ∉ l1 ∪ l2. Recall that a is not a line, hence
the intersection a ∩ (l1 ∪ l2) is at most countable. Thus, the limit B+ exists for a
generic point A.

Now, let us prove that B+ 6= A and D+ 6= A. Again, we will only prove that
B+ 6= A. Assume the converse, i. e. for uncountably many points A ∈ a the limit
B+ coincides with A.

Recall that we have attached the limits of the mirror b (if they exist) to the
curve b itself, hence B+ ∈ b. Therefore, the equality A = B+ is possible only if
A ∈ b. Note that if a 6= b, then the intersection a ∩b is at most countable, thus
A 6= B+ for a generic point A ∈ a. Therefore, a = b.

Consider the set V of points A ∈ a such that the limit B+(A) exists, B+(A) = A
and A neither a marked point nor an inflection point of a. The set of marked
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FIGURE 6. Reflection in involute

points is at most countable, as well as the set of inflection points of a. Therefore,
the set V is uncountable.

For A ∈ V , the point Bα tends to A along a regular arc of the mirror a, hence
the line ABα tends to the tangent line to a at A. Therefore, for A ∈V the anglesα+
and β+ must be equal to π, thus the angles γ+ and δ+ must be equal to 0. In this
case for every A ∈V the limits C+ and D+ exist and belong to the intersection of
TA a with the mirrors c and d , respectively. Also note that for a generic point A ∈
a these intersections are regular points of the corresponding curves. Therefore
for a generic point A ∈V the curves c and d are perpendicular to the tangent line
TA a (reflection law), thus the same holds true for any point A ∈ a. Hence the
curves c and d are involutes of the mirror a, therefore the curve a is the evolute
of c and d (see Figure 5).

Note that A 6= C+ and A 6= D+ for A ∈ V . Indeed, the tangent lines to c at C+
and to d at D+ are perpendicular to the tangent line to a at A. Therefore the
germs (c,C+) and (d ,D+) cannot coincide with the germ (a, A). Since A is not a
marked point, A 6=C+ and A 6= D+.

Consider the trajectory ABαCαDα forα=π−ε, ε¿ 1. Let l ′ be the perpendic-
ular to d at Dα. Let Â be the image of A under reflection with respect to l ′. Since
d is an involute for a, the line l ′ is tangent to a, l ′ = TX a. Clearly, the segment
X Bα intersects the line ADα and the segment BαCα does not intersect this line.
Hence, the segment XCα intersects the line ADα, and the segment ÂCα inter-
sects ADα as well. On the other hand, due to reflection law the ray Dα Â must
coincide with the ray DαCα, hence the segment Cα Â does not intersect ADα.
This contradiction completes the proof.
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In order to prove the existence of the limit C+ we will need the following two
easy lemmas.

LEMMA 47. Suppose that a is not a straight line, and for uncountably many points
A ∈ a the limits B+ and D+ exist and are marked points. Then a is an ellipse.

Proof. Note that the function φ : A 7→ (B+,D+) takes countably many values on
an uncountable set. Therefore it is a constant on some uncountable subset. Let
(B 0+,D0+) be this constant, i. e. |φ−1(B 0+,D0+)| > |N|. Note that for each point A ∈
φ−1(B 0+,D0+) the tangent line TA a is the exterior bisector of the angle B 0+AD0+.
Consider the analytic function s(A) = AB 0++AD0+. The derivative of this function
is equal to zero at uncountably many points, namely at any non-isolated point
A ∈ φ−1(B 0+,D0+). Hence, s(A) is constant, therefore a is an ellipse or a line. Due
to the naming convention, a is not a line, hence a is an ellipse.

Note that the naming convention implies the assertions of Lemmas 46 and 47.

LEMMA 48. Suppose that the naming convention holds. Then for a generic point
A ∈ a at least one of the points B+ and D+ is a regular point of the corresponding
mirror.

Proof. Assume the converse. Then B+ and D+ belong to at most countable set of
marked points for uncountably many points A ∈ a. Therefore a is an ellipse but
the curves b and d are singular curves. This contradicts our naming convention.

LEMMA 49. Suppose that the naming convention holds. Then for a generic point
A ∈ a the limit C+ exists.

Proof. Suppose that the limit C+ does not exist for uncountably many points
A ∈ a.

Denote by s(A,α) the sum ABα+ ADα. Due to Lemma 46, for a generic point
A ∈ a both limits B+ and D+ exist, therefore the limit s(A,α+) of s(A,α) asα→α+
exists as well. Hence, the limit of the sum BαCα+CαDα = 1− s(A,α) also exists
and is equal to 1−s(A,α+), thus the vertex Cα tends to the ellipse E = { X | B+X +
X D+ = 1− s(A,α+) }.

First consider the case of non-degenerate ellipse E , i. e. 1− s(A,α+) > B+D+,
see Figure 7 (a). Due to Lemma 48, for a generic point A either B+ or D+ is a
regular point of the respective mirror. Obviously, it is sufficient to consider the
case when B+ is a regular point of b. In this case both limits limα→α+ AB+ and
limα→α+ TBα

b exist, hence the limit of the ray BαCα asα→α+ exists as well. This
limit ray intersects the ellipse E on exactly one point C ′+. Since Cα must tend
both to the ray B+C ′+ and to the ellipse E , limα→α+ Cα =C ′+. Finally, for a generic
point A if 1− s(A,α+) > B+D+, then the limit C+ exists.

Now let us consider the case 1− s(A,α+) = B+D+, see Figure 7 (b). In this case
Cα must oscillate along the segment B+D+. Note that the curve c can oscillate
along at most two lines, therefore the line B+D+ must be the same (say, l ) for
uncountably many points A.
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FIGURE 7. Cases in Lemma 49

Let us prove that none of the mirrors b and d coincide with the line l . As
usual, it is sufficient to prove that b 6= l . Assume the converse. Recall that due to
the naming convention a is not a line, therefore the intersection a ∩ l is at most
countable. Thus there exist uncountably many points A ∈ a such that

• the point A does not belong to the line l ;
• the line B+D+ coincides with the line l ;
• the point Cα oscillates along the line l .

Since A ∉ l , the angle between the lines AB+ and l is non-zero. Hence, the angle
between the line b = l and the reflected ray BαCα must tend to the same nonzero
number. But in this case the point Cα cannot oscillate along the line l . This
contradiction shows that the assumption is false, i. e. none of the mirrors b and
d coincide with the line l .

Finally, b 6= l and d 6= l , therefore B+ and D+ belong to at most countable set
of points (b∪d)∩l for uncountably many points A. Therefore, B+ and D+ do not
depend on A for A from some uncountable set. The rest of this paragraph deals
only with the points A from this uncountable set. Due to Lemma 47, the curve a
is an ellipse. Due to our naming convention, either b or d is either an ellipse or a
line.

Without loss of generality we can and will assume that the curve b is an ellipse
or a line, thus the limit of TB b as B → B+ exists. Note that Cα oscillates along
B+D+ thus there exists a sequence αn → α+ such that the ray Bαn Cαn tends to
B+D+ as n →∞. The exterior bisector of the angle ABαn Cαn is the tangent line
to b at the point Bαn , thus the sequence of these bisectors tends to TB+b. Note
that both the limit of the sequence of exterior bisectors and the limit of the rays
Bαn Cαn do not depend on A, thus the line AB+ does not depend on A, and the
point A must belong to the intersection of this line with the curve a. Therefore,
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this intersection is uncountable, hence a is a line, which contradicts our naming
convention. This contradiction completes the proof.

3.5. Case of two singular points. The following Lemma reduces the case of two
singular points to the case of coinciding limits.

LEMMA 50. Suppose that the naming convention holds. For a generic point A ∈ a
if two of the points B+, C+, D+ are singular points of the corresponding mirrors,
then either B+ =C+, or C+ = D+.

Proof. Assume the converse, then there exist uncountably many points A ∈ a
such that at least two of the points B+, C+, D+ are singular points of the corre-
sponding mirrors, and B+ 6=C+, C+ 6= D+.

Due to Lemma 48, for a generic point A ∈ a either B+ or D+ is a regular point
of the corresponding mirror, thus either B+ and C+, or C+ and D+ are singular
points of the corresponding mirrors. Due to the symmetry, it is sufficient to con-
sider the former case, B+ and C+ are singular points of b and c and B+ 6=C+.

The set of singular points of an analytic curve is at most countable, thus the set
V (B 0,C 0) = { A | B+(A) = B 0,C+(A) = C 0 } is uncountable for some two singular
points B 0 ∈ b, C 0 ∈ c, B 0 6=C 0. Note that if A ∈V (B 0,C 0)à {B 0 }, then A 6= B+ and
B+ 6= C+, hence the limit of the exterior bisector of the angle ABαCα as α→ α+
exists. On the other hand, this exterior bisector is the tangent line to b at Bα, thus
the limit of the tangent line to b at B as B → B+ exists.

The line AB+ is the image of the line B+C+ under the reflection with respect
to TB+b, hence the line l = AB+ is the same for all points A ∈ V (B 0,C 0)à {B 0 }.
Therefore V (B 0,C 0)à {B 0 } is a subset of the intersection l ∩ a which is at most
countable. Thus V (B 0,C 0) is at most countable, which contradicts the statement
from the previous paragraph. This contradiction proves the Lemma.

3.6. Straight angle case. The main result of this subsection is the following state-
ment.

PROPOSITION 51. Suppose that the naming convention holds. For a generic point
A ∈ a if B+ 6= C+, and C+ 6= D+, then none of the angles of the quadrilateral
AB+C+D+ equals π.

REMARK 52. Recall that for a generic point A ∈ a the limits B+, C+ and D+ exist
and A 6= B+, A 6= D+. The conditions B+ 6=C+ and C+ 6= D+ are needed to define
the angles of AB+C+D+.

We will split the proof of this statement into a few lemmas.
The following three lemmas prove that the angle of measure π cannot ap-

pear with another degeneracy for a generic point A. Then we will prove that
the straight angle cannot appear without other degeneracies, thus completing
the proof of Proposition 51.

LEMMA 53. Suppose that the naming convention holds. For a generic point A ∈ a
if B+ 6=C+ and C+ 6= D+, then at most one of the anglesα+, β+, γ+ and δ+ is equal
to π.
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FIGURE 8. One straight angle, one fixed vertex

Proof. Suppose that at least two of the anglesα+, β+, γ+, δ+ are equal to π. Then
two other angles are equal to 0, and the quadrilateral AB+C+D+ is a segment.
Note that the angle α always increases, thus α+ 6= 0. Therefore α+ =π, hence the
line AB+ is tangent both to a and one of the curves b, c and d . Let p be this other
curve, and P be the corresponding vertex.

The set of common tangent lines to two different analytic curves is at most
countable, as well as the set of the lines that are tangent to the curve a at two
different points (recall that a is not a line). Therefore, P = A and p = a. Due to
Lemma 46, for a generic point A ∈ a neither B+, nor D+ coincides with A. Hence,
p = c and P =C+, i. e. a = c and A =C+.

Using the same arguments as in Lemma 46, one can prove that the mirrors b
and d are involutes of the mirror a. Note that for α close enough to π the mirror
a has no inflection points between A and Cα. Let lα be the bisector of the angle
ABαCα. On the one hand, it must intersect the mirror a between the points A
and Cα, therefore lα cannot be tangent to a. On the other hand, it is perpendic-
ular to the involute of a, therefore it must be tangent to a. This contradiction
completes the proof.

LEMMA 54. Suppose that the naming convention holds. Then there does not ex-
ist an uncountable set V ⊂ a and a point P ∈ R2 such that for every A ∈ V the
following conditions hold.

1. the limits B+, C+ and D+ exist;
2. A 6= B+, B+ 6=C+, C+ 6= D+ and D+ 6= A;
3. exactly one of the angles of the quadrilateral AB+C+D+ equals π;
4. one of the points A, B+, C+, D+ coincides with P.

Proof. Assume the converse. Without loss of generality we can and will assume
that the same angle of the quadrilateral AB+C+D+ equals π for all A ∈V and the
same vertex coincides with P . Let P , Q, R, S be the vertices of the quadrilat-
eral AB+C+D+ enumerated starting from P either in the same or in the opposite
cyclic order as A, B+, C+, D+. Denote by p, q , r , s the corresponding mirrors.

Due to the second assumption of the Lemma, the mirrors p, q,r, s have the
tangents at the points P,Q,R,S in the sense of Convention 30.

Consider three cases (see Figure 8).
Case I.∠P =π. In this case the points S and Q belong to the intersection of the

line TP p with the mirrors s and q , respectively. Note that this intersection is at
most countable. Indeed, if either s or q intersects the line TP p on uncountably
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FIGURE 9. Perturbation of a degenerate quadrilateral in Case III

many points, then this curve must coincide with TP p, hence either ∠S = π or
∠Q = π which contradicts Lemma 53. Finally, R also belongs to the countable
set of the intersections of two families of lines, namely, the images of the line
TP p under the reflections with respect to the lines TQ q and TS s. Therefore the
set of quadrilaterals PQRS is at most countable. Hence, this case is impossible.

Case II. ∠Q = π or ∠S = π. We will consider only the case ∠Q = π, because
the other case can be reduced to this one by renaming the points. Note that the
number of tangent lines to q passing through the point P is at most countable.
Therefore the line PQR belongs to at most countable set. Recall that the line RS
is the image of the line PR under the reflection with respect to TR r . Note that
the curve r cannot coincide with the line PQR. Indeed, otherwise ∠Q =∠R = π
which is impossible due to Assumption 3. Therefore the point R belongs to at
most countable set, and the line RS belongs to at most countable set as well.
Finally, each of the points P , Q, R, S belongs to the union of at most countable
set of lines. Therefore, the point A also belongs to the union of at most countable
set of lines and due to the naming convention A belongs to at most countable set
of points. Thus this case is also impossible.

Case III. ∠R = π. Let us prove that the set of the possible triangles PQS is
discrete. Consider one of the quadrilaterals PQ0R0S0 and another quadrilateral
PQRS close enough to PQ0R0S0. Note that Q0R0S0 and QRS are tangent lines to
the curve r at close points R and R0. Therefore the segments QS and Q0S0 must
intersect each other. On the other hand, the reflection law at vertex P implies

that the directed angles∠(
−→
PS,

−−→
PS0) and∠(

−−→
PQ,

−−→
PQ0) have different signs (see Fig-

ure 9). Since the line QQ0 (resp., SS0) is close to the exterior bisector of the angle
∠PQ0S0 (resp., ∠PS0Q0), the points Q and S belong to the same half-plane with
respect to the line Q0S0, i. e., the segment QS does not intersect the line Q0S0.
This contradiction proves that Case III is impossible.

Finally, none of the three cases is possible. This proves the lemma.

LEMMA 55. Suppose that the naming convention holds. For a generic point A ∈ a
if B+ 6= C+, C+ 6= D+ and one of the angles of the quadrilateral AB+C+D+ equals
π, then none of the vertices of AB+C+D+ is a singular point of the respective curve.

Proof. This lemma is immediately implied by the previous lemma and the fact
that the set of singular points of an analytic curve is at most countable.
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So, the previous three lemmas show that the straight angle cannot appear with
another degeneracy. The following lemmas prove that the angle of measure π
cannot appear alone as well.

LEMMA 56. Suppose that the naming condition holds. For a generic point A ∈ a
if B+ 6=C+ and C+ 6= D+, then none of the angles β+ and δ+ equals π.

Proof. Recall (see Remark 52) that for a generic point A ∈ a the inequalities B+ 6=
C+ and C+ 6= D+ imply that the limits β+, γ+ and δ+ exist. Also recall that due to
Lemma 55 the points B+, C+ and D+ are regular points of the respective curves.

Assume the converse, i. e. β+ = π or δ+ = π for uncountably many points
A ∈ a. Due to the symmetry it is sufficient to consider the case β+ = π. Note
that α+ > 0 thus neither γ+ nor δ+ is equal to π (it also follows from Lemma 53).
Also note that for a generic point A ∈ a the curve b and the line AB+ have only 2-
point contact. Consider a trajectory very close to AB+C+D+, namely ABαCαDα

for α=α+−ε, ε¿ 1.
Let us find the order of the length of the segment C+Cα in two ways, using the

path A → D →C and using the path A → B →C .
On the one hand, the angle δ+ is not equal to π, thus both Dα and the angle of

incidence δα/2 of ADα depend smoothly on α at α = α+. Due to the inequality
γ 6=π, the point Cα also depends smoothly on α, therefore CαC+ =O(ε).

Recall that A 6= B+ and AB+ has 2-point contact with b, thus BαB+ is of the
order

p
ε. Therefore the angle between AB+ and the tangent line to b at Bα is

of the order
p
ε. Let us compute the angle between BαCα and B+C+. The angle

between ABα and AB+ is equal to ε/2. Hence, the angle between AB+ and the
image of ABα under the reflection with respect to the line AB+ equals ε/2. The
line BαCα is the image of the same line ABα under the reflection with respect
to the tangent line TBα

b. The angle between these two reflecting lines is of the
order

p
ε, therefore the angle between BαCα and AB+ is of the order

p
ε.

Denote by B ′
α the intersection point of the line BαCα and the perpendicular

(TB+b)⊥ to b at B+ (see Figure 10). Note that B ′
αB+ is of the order ε. Indeed, the
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distance between Bα and B+ is of the order
p
ε, and the angle between BαCα and

AB+ is also of the order
p
ε, hence the distance between B ′

α and the projection
of Bα to (TB+b)⊥ is of the order ε. On the other hand, the distance between this
projection and B+ is also of the order ε. Hence, B ′

αB+ =O(ε).
Denote by C ′

α the intersection point of the mirror c and the line parallel to
AC+ passing through B ′

α. The angle between TC+c and B+C+ is non-zero, thus
the distance between C+ and C ′

α is of the same order as B ′
αB+, i. e. ε. Recall that

B+ 6= C+, therefore the distance between C ′
α and Cα is of the same order as the

angle between BαCα and B+C+, i. e.
p
ε. Thus the distance CαC+ is of the orderp

ε.
Finally, we have CαC+ &

p
ε and CαC+ . ε at the same time which is impossi-

ble. Therefore the angleβ+ cannot be equal toπ. Recall that due to the symmetry
the angle δ+ cannot be equal to π as well.

LEMMA 57. Suppose that the naming convention holds. For a generic point A ∈ a
if B+ 6=C+ and C+ 6= D+, then α+ 6=π.

Proof. Assume the converse, i. e. B+ 6=C+, C+ 6= D+ and α+ = π for uncountably
many points A ∈ a. Recall that due to Lemma 55 for a generic point A the equality
α+ =π implies that the vertices of the quadrilateral AB+C+D+ are regular points
of the corresponding mirrors. Moreover, due to Lemma 53 for a generic point
A ∈ a the equality α+ = π implies that none of the angles β+, γ+ and δ+ is equal
to π.

Fix a point A0 such that all the statements from the previous paragraph hold
for A0. There exists a neighborhood A0 ∈U ⊂ a and a positive number ε> 0 such
that for every point A ∈ U and any angle α ∈ (π− ε,π] the points Bα(A), Cα(A)
and Dα(A) are well-defined regular points of the respective germs of mirrors.
Therefore the conditions of the lemma (as well as the genericity conditions from
the previous paragraph) hold also for all points A ∈U . Let us replace U with its
subinterval such that the curvature of a is non-zero at all points of U .

Denote by As the parametrisation of U by the natural parameter such that the
vector d As

d s is directed towards the point Bπ(As). Let us show that Cπ(As) does
not depend on As . To this end consider the families B s = Bπ(As), C s = Cπ(As),
D s = Dπ(As), and let us prove that dC s

d As = 0. Let k s be the curvature of the mirror
a at a point As . We say that k s is positive if a is locally inside the triangle B sC sD s

and negative otherwise. Denote by l s the line tangent to a at As , l s = (B sD s).
Let us compute the derivative dC s

d s in two ways: using the trajectory A → B →
C , and using the trajectory A → D →C .

Take a small number ε such that k sε> 0. Note that the angle between the lines
l s and l s+ε is equal to k sε+o(ε). Therefore, the angle between the rays As+εB s+ε
and3 AsBπ−2k sε(As) is o(ε) and the distance dist(As , l s+ε) is o(ε) as well. Hence
the length of the segment B s+εBπ−2k sε is o(ε). Similarly, the angle between the
reflected rays B s+εC s+ε and Bπ−2k sε(As)Cπ−2k sε(As) is o(ε), and the initial point
of the latter ray is o(ε)-close to the former ray. Hence C s+ε =Cπ−2k sε(As)+o(ε).

3The point Bπ−2k sε(As ) is defined since ksε> 0
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On the other hand, the line AsDπ−2k sε(As) is “nearly parallel” to the line l s−ε,
not to the line l s+ε. Therefore applying the same arguments to the path A → D →
C one can show that C s−ε = Cπ−2k sε(As)+o(ε). Finally, C s+ε = C s−ε+o(ε) thus
dC s

d s = 0 and C s does not depend on s.
On the other hand, due to Lemma 54 the point Cπ(A) cannot be the same for

uncountably many points A ∈ a. This contradiction proves the lemma.

LEMMA 58. Suppose that the naming convention holds. For a generic point A ∈ a
if B+ 6=C+ and C+ 6= D+, then γ+ 6=π.

Proof. Assume the converse, then for uncountably many points A ∈ a, the point
C+ does not coincide neither with B+, nor with D+, and γ+ =π.

As in the previous lemma, let us choose A0 such that the limits B+, C+, D+
exist and are regular points of the corresponding mirrors, A0 6= B+(A0), B+(A0) 6=
C+(A0), C+(A0) 6= D+(A0), D+(A0) 6= A0 and none of the angles α+, β+ and δ+
equals π.

Let us also fix α0 close to α+ such that γα0 is sufficiently close to π, fix a point
C = Cα0 and start augmenting the angle γ. Obviously, the naming convention
will hold for this angular family as well. Note that the points Bγ, Aγ and Dγ

will not exit some small neighborhoods of B+, A+ and D+, respectively. Hence,
the points A+, B+ and D+ are regular points of the corresponding curves, and
C+ 6= B+, B+ 6= A+, A+ 6= D+ and D+ 6=C+. Therefore, the angle family AγBγC Dγ

extends to the angle γ+ =π, which is impossible due to Lemma 57.

Proof of Proposition 51. This proposition follows immediately from Lemmas 56,
57 and 58.

3.7. Reduction to the case of coinciding limits. In this subsection we will sum-
marize the result of the previous subsections into the following proposition.

PROPOSITION 59. Suppose that the naming convention holds. Then for a generic
point A ∈ a the limits B+, C+, D+ exist and either B+ =C+, or C+ = D+.

Proof. Recall that Lemma 41 states that for any point A ∈ a one of the following
cases holds.

1. At least one of the limits B+ = limα→α+ Bα, C+ = limα→α+ Cα and D+ =
limα→α+ Dα does not exist.

2. AB+C+D+ is a degenerate quadrilateral (see Definition 36).
3. At least two of the points B+, C+ and D+ are singular points of the corre-

sponding mirrors4.

Due to Proposition 45, the first case holds for at most countable set of points
A ∈ a. Hence, for a generic point either AB+C+D+ is a degenerate quadrilateral,
or at least two points among B+, C+ and D+ are singular points of the respective
curves.

4Recall that due to Convention 33 a self-intersection point is not a singular point provided that
all the branches passing through this point are regular curves.
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Due to Lemma 50, for a generic point A ∈ a the third condition implies B+ =
C+ or C+ = D+, hence for a generic point A ∈ a the quadrilateral AB+C+D+ is
degenerate.

Recall that a quadrilateral AB+C+D+ is degenerate if either A = B+, or B+ =
C+, or C+ = D+, or D+ = A, or one of the angles of this quadrilateral equalsπ. Due
to Proposition 45, the equalities A = B+ and A = D+ hold for at most countable
set of points A ∈ a. Therefore, for a generic point A ∈ a either B+ = C+, or C+ =
D+ or one of the angles of AB+C+D+ equals π.

Finally, Proposition 51 states that for a generic point A ∈ a the latter condition
(α+ =π or β+ =π or γ+ =π or δ+ =π) implies the first one (B+ =C+ or C+ = D+).
Therefore, for a generic point A ∈ a either B+ =C+ or C+ = D+.

3.8. Coinciding limits. This Subsection is devoted to the following statement.

PROPOSITION 60. Suppose that the naming convention holds. Then for a generic
point A ∈ a neither B+ =C+, nor C+ = D+.

We will split the proof into a series of lemmas.
First, let us prove that some other degeneracies do not happen at the same

time as “B+ =C+”.

LEMMA 61. Suppose that the naming convention holds and B+ =C+ for uncount-
ably many points A ∈ a. Then there exists an uncountable set Σ⊂ a such that for
every A ∈Σ

1. the limits B+, C+ and D+ exist;
2. B+ =C+ = X is a marked point;
3. X is the same point for every A ∈Σ;
4. 4AX D+ is non-degenerate;
5. D+ is a regular point of d.

Proof. Due to Proposition 45, the first assertion holds for a generic point A ∈ a.
Let us prove the second assertion. Indeed, otherwise the germ of b at X co-

incides with the germ of c at X , hence D+ belongs to the ray AB+, thus α+ = 0
which is impossible.

Let Σ1 be the set of points A ∈ a such that the first two assertions hold. Since
the set of marked points is at most countable, there exists an uncountable subset
Σ2 ⊂Σ1 such that the first three assertions hold for Σ2.

Let us prove the fourth assertion. Due to Proposition 45, A 6= X and A 6= D+.
Since α+ > 0, it is sufficient to show that ∠X AD+ 6= π for a generic point A ∈
a. Recall that due to the naming convention a is not a line, thus X ∉ TA a for a
generic A ∈ a. Therefore, 4AX D+ is non-degenerate for a generic A ∈Σ2. Let Σ3

be the set of points A ∈Σ2 such that AX D+ is non-degenerate.
Due to Lemma 48, D+ is a regular point of d for a generic A ∈ Σ3. Finally, one

can put Σ to be the set of points A ∈Σ3 such that D+ is a regular point of d .

Next, let us show that X “looks like a transversal intersection of b and c”.
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LEMMA 62. Suppose that the naming convention holds and B+ =C+ for uncount-
ably many points A ∈ a. Let Σ be the set from the previous lemma. Then the limit
φ(A) of the angle between TBα

b and TCα
c exists, is positive, and φ|Σ is a step func-

tion.

Proof. The composition of reflections with respect to the lines TBα
b and TCα

c
tends to the rotation around X through π−∠AX D+. Hence,

lim
α→α+

∠(TBα
b,TCα

c) = π−∠AX D+
2

=:φ(A).

The right hand side is positive, since the triangle AX D+ is non-degenerate.
Now let us show that φ is a step function. If X is a regular point of c or there

exists TX c in the sense of Convention 30, then the existence of the limit φ(A)
imlies that the tangent line TX b exists as well. Therefore, φ(A) = ∠(TX b,TX c)
does not depend on A.

Suppose that TX c does not exist. Then TX b does not exist as well.
Fix two points A, Ã ∈ Σ close to each other. Let ÃB̃κC̃κD̃κ be the angle family

corresponding to Ã. Since neither TX b, nor TX c exist, the curves B̃κ and C̃κ are
reparametrizations of the curves Bα and Cα, respectively. Hence, B̃r (α) = Bα and
C̃s(α) =Cα for some analytic functions r and s.

We need to show that φ(A) =φ(Ã). Clearly, it is sufficient to show that

liminf
α→α+
κ→κ+

|∆φ(α,κ)| = 0,

where
∆φ(α,κ) =∠(TBα

b,TCα
c)−∠(TB̃κ

b,TC̃κ
c).

Let κ= s(α). Then Cα = C̃κ, hence

∆φ(α, s(α)) =∠(TBα
b,TCα

c)−∠(TB̃s(α)
b,TC̃s(α)

c) =∠(TBα
b,TBr−1◦s(α)

b).

Therefore, it is sufficient to show that

(17) liminf
α→α+

|∠(TBα
b,TBt (α) b)| = 0,

where t = r−1 ◦ s.
Notice that the line TBα

b cannot pass through A. Indeed, if A ∈ TBα̂
b, then Bα

is not analytic at α= α̂— a contradiction. Denote byψ(α) the R-valued azimuth
of TBα

b. Since A ∉ TBα
b, the function ψ is bounded in a small neighborhood of

α+. Consider two cases.
Case I. sup{α |ψ(α) =ψ(t (α))} =α+. In this case (17) is obvious.
Case II. There existsα0 <α+ such thatψ(α) 6=ψ(t (α)) forα0 ≤α<α+. Without

loss of generality, we will assume thatψ(α) <ψ(t (α)). Consider a sequenceαi →
α+ such that ψ(αi ) → limsupα→α+ψ(α) =: Ψ. Recall that ψ(αi ) < ψ(t (αi )) and
limsupi→∞ψ(t (αi )) ≤ Ψ. Hence, due to the squeeze lemma, ψ(t (αi )) → Ψ as
i →∞. Therefore, ψ(αi )−ψ(t (αi )) → 0, which implies (17).

Proof of Proposition 60. Due to the lemmas above, there exists an uncountable
set Σ⊂ a such that
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1. the limits B+, C+, D+ exist for every A ∈Σ;
2. B+ =C+ = X is the same point for all A ∈Σ;
3. 4AX D+ is non-degenerate, and ∠AX D+ =ϕ does not depend on A;
4. D+ is a regular point of d .

The point D+ is uniquely defined by A, X and ϕ, i. e. no other information
about the curves a, b, c and d is required to find D+. Indeed, D+ is the unique
point such that ∠AX D+ = ϕ and X D+ + D+A = 1 − AX . Hence, the tangent
line TA a is uniquely defined by A, X and ϕ as the exterior bissector of the an-
gle X AD+(A).

Consider polar coordinate system with origin at X . The construction described
above yields a differential equation dr

dϕ = F (r ), where F is an analytic function
F : (0,0.5) → R, sgnF = const, limr→0.5− F (r ) = 0. The analytic curve a satisfies
this equation at an uncountable set of points, thus a is an integral curve for this
equation. Therefore, a is a spiral making infinite number of turns around X both
as ϕ→+∞ and as ϕ→−∞.

The same arguments prove that d is an integral curve for the vector field dr
dϕ =

−F (r ). Thus d is the image of a under the reflection through a line passing
through X .

The mapα 7→Cα is not a constant for a generic point A ∈ a. Indeed, if Cα does
not depend on α, then b and d are ellipses with foci A and Cα, but d is a spiral.
Consider the angle family AγBγC Dγ with fixed point C =Cα0 .

Due to Proposition 59, either A+ = B+, or A+ = D+.
Case I. Let A+ = B+ = X ∗. Then the curves c and d are spirals around X ∗, as

in the above discussion. Hence, d is a spiral around two points, X ∗ and X , thus
X ∗ = X and c is a spiral around X . Therefore, the R-valued azimuth of TCα

c is an
unbounded function. This is impossible due to Lemma 62 and the boundness of
the azimuth of TBα

b . Hence, this case is impossible.
Case II. Let A+ = D+ = X ∗. Then the curves b and c are spirals around X ∗.

Since the azimuth of TBα
b is bounded, X ∗ 6= X .

Therefore, the reflection through X X ∗ sends a and b to d and c, respectively.
Let γ be an angle close to γ+, so that A = Aγ is a generic point of a close to X ∗.
Consider the angle family ABαCαDα with vertex A fixed at the point constructed
above. It is easy to see that for α close enough to α+, the ray CαBα lies between
the rays CαX and CαDα. Now, let us fix C =Cα at this new position, and consider
the new angle family AγBγC Dγ. Since the ray C Bγ0 lies between the rays C X
and C Dγ0 , the vertex Bγ does not leave a small neighborhood of X . Therefore,
the value of the angle C X ∗B+ can be made arbitrarily small. On the other hand,
this value does not depend on C . This contradiction completes the proof.

3.9. Proof of the main theorem. Now Theorem 32 (and hence Theorem 4) is an
easy consequence of Propositions 59 and 60. Indeed, due to Proposition 59 for
a generic point A the limits B+, C+ and D+ exist and either B+ =C+ or C+ = D+.
On the other hand, due to Proposition 60 for a generic point A neither B+ = C+
nor C+ = D+ . This contradiction completes the proof.
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4. FURTHER RESEARCH

In this section we will discuss the case of k-gonal orbits, k > 4. We want to use
the same strategy, i. e. consider an angle family A1 Aα1

2 . . . Aα1

k , α1 = ∠Ak A1 A2,
and study the limit as the angle α1 tends to its maximal value α+

1 6π.

4.1. General case. The following straightforward generalization of Lemma 41
lists the possible cases for the limit configuration.

LEMMA 63. Consider a parametric family A1 Aα1
2 . . . Aα1

k , where A1 is a regular
point of the corresponding mirror γ1, α1 =∠Ak A1 A2, α1 ∈ (α−

1 ,α+
1 ) ⊂ (0,π). Then

one of the following cases holds.

1. At least one of the limits A+
i = limα1→α+

1
Aα1

i does not exist.
2. A1 A+

2 A+
3 . . . A+

k is a degenerate k-gon (see Definition 36).
3. At least two of the points A+

i are singular points of the corresponding mir-
rors.

It seems that this lemma lists the same obstructions as Lemma 41 but actually
for k > 4 there are much more possible combinations of these obstructions. Of
course, some of the lemmas developed for the case k = 4 can be generalized for
k > 4, but they do not cover all cases.

Let us list some difficulties that appear only for k > 4.

• Some of the limits A+
i do not exist.

• At least two of the angles α+
i are equal to π.

• One of the angles α+
i is equal to π and one of the vertices A+

i is a singular
point of the respective curve.

• Two consequent vertices coincide, A+
i = A+

i+1.

There are other cases (say, A+
2 = A+

3 and one of the angles α+
i is equal to π) but

we believe that the cases above are the most important.

4.2. Current status for k = 5. As we stated above, the straightforward general-
izations of our lemmas do not cover all possible cases even for k = 5. The cases
that are not covered by these generalizations are sketched in Figures 11 and 12.
The vertices known to be marked points are indicated by small empty circles, the
vertices known to be regular (non-marked) points are indicated by small black
disks, and the points that can be either marked, or non-marked, are indicated by
black halfdisks.

One can prove that some of these cases are impossible. For the case of two
straight angles, this was proved by V. Kleptsyn. But explaining the ideas required
to this proof would take much space, and we still did not proved that all of these
cases are impossible. Some generalizations used for restricting the list of possi-
ble cases will be formulated in the next subsection.

4.3. Straightforward generalizations. In this subsection we will formulate some
straightforward generalizations of the lemmas used in this article. Since these
lemmas do not lead immediately to any remarkable result for k > 4, we will not
prove them.
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FIGURE 11. “Non-trivial” cases for k = 5. Part 1.
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LEMMA 64 (cf. Lemma 43). Let {γi }k
i=1 be a k-reflective billiard germ. Then there

are at most k −3 straight lines among the mirrors γi .

LEMMA 65 (cf. Lemma 46). Suppose that γ1 is not a straight line. Then for a
generic point A1 ∈ γ1 the limits A+

2 and A+
k exist. If k = 5, then either A+

2 6= A1, or
A+

5 6= A1.

LEMMA 66 (cf. Lemma 49). Let p be a natural number, 36 p 6 k−1. For a generic
point A1 ∈ γ1 the following implication holds. Suppose that the following holds.

• All the limits A+
i , i 6= p exist.

• All the points A+
i , i 6= p are regular points of the corresponding mirrors.

• For any i = 1, . . . , p − 2, p + 1, . . . ,n the limit A+
i does not coincide with the

limit A+
i+1.

• The perimeter of the (k −1)-gon A1 A+
2 . . . A+

p−1 A+
p+1 . . . Ak is less than one.

Then the limit A+
p exists.

Notice that for k > 5 these two lemmas do not imply existence of all the limits
A+

i .

LEMMA 67 (cf. Lemma 56). A tangency ∠A1 A+
2 A+

3 =π cannot be the only obstruc-
tion to the analytic extension of the angle family, i. e. it is impossible that all the
following conditions hold:

• the limit A+
i exists for every i = 2, . . . ,k;

• A+
i 6= A+

i+1 for i = 2, . . . ,k −1, A+
k 6= A1, A1 6= A+

2 ;
• ∠A+

i−1 A+
i A+

i+1 6=π for i = 3, . . . ,k −1, ∠A+
k−1 A+

k A1 6=π, ∠A+
k A1 A+

2 6=π;
• each limit A+

i is a regular point of the corresponding curve;
• ∠A1 A+

2 A+
3 =π.
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FIGURE 12. “Non-trivial” cases for k = 5. Part 2.
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